K.S.Rangasamy College of Technology

(Autonomous)

Curriculum & Syllabi of

M.E. VLSI Design

(For the batch admitted in 2022 – 2023)

R 2022

Accredited by NAAC with 'A++' Grade, Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

Vision

To become recognized as a leader in Electronics and Communication Engineering education and research

Mission

- To craft professionals and technology leaders adherent to the professional ethical code in the areas
 of Electronics and communication Engineering
- To address the needs of the society while advancing boundaries of disciplinary and multidisciplinary research and cultivate universal moral values

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** To develop a progressive career in research and industry with the ability to analyse, design and fabricate Integrated Circuits.
- **PEO2:** To gain a firm grasp on growing areas of VLSI with acquired knowledge on concepts and use of appropriate tools
- **PEO3:** To exhibit ethical practices and social behavior with an attitude of lifelong learning and strong communication skills

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- PO1: An ability to independently carry out research /investigation and development work to solve practical problems
- PO2: An ability to write and present a substantial technical report/document
- PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program
- PO4: An ability to identify appropriate EDA tool for design and analysis of Integrated Circuits
- PO5: An ability to communicate effectively and solve societal problems with ethical principles
- PO6: An ability to apply the knowledge of VLSI concepts in the design and development of Integrated Circuits

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMMEOUTCOMES (POs)

The M.E. VLSI Design Programme outcomes leading to the achievement of the objectives are summarized in the following Table.

Programme	Programme Outcomes											
Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6						
PEO 1	3	3	3	3	3	2						
PEO 2	3	3	3	3	3	3						
PEO 3	2	2	2	2	2	3						

Contributions: 1- low, 2- medium, 3- high

MAPPING: VLSI DESIGN(PG)

YEAR	SEM	COURSE CODE	COURSE NAME	PO1	PO2	PO3	PO4	PO5	PO6
I	l	60 PVL 101	Graph Theory and Optimization Techniques	3	3	2.6	2.6	2.6	3
		60 PED 001	Research Methodology and IPR	3	3	2	2	2	2
		60 PVL 103	Analog IC Design	3	3	3	2	2	3
		60 PVL 104	Digital CMOS VLSI Design	3	3	2.8	2.8	3	3
		60 PVL 105	Advanced Digital System Design	3	3	3	3	3	3
		60 PVL 106	Advanced Embedded Computing	3	3	3	3	3	2
		60 AT 001	English for Research Paper Writing						
		60 PVL1P1	VLSI Laboratory I	3		3	3	3	3
		60 PVL1P2	Analog IC Design Laboratory	3	3	3	3	2	3
	II	60 PVL 201	Design for Verification using UVM	3		3	3		3
		60 PVL 202	Low Power VLSI Design	3		3	2.5		3
		60 PVL 203	RF Circuit Design	3	3	3	3	2	3
		60 PVL 204	VLSI Testing	3		3	2.7		3
		60 PVL E1*	Professional Elective I						
		60 PVL E2*	Professional Elective II						
		60 AT 002	Disaster Management						
		60 PVL 2P1	VLSI Laboratory II	3		3	3	3	3
	60 PVL 2P2		Term Paper and Seminar	3	2.75	3	2.4	2.75	3
	60 PVL 301		VLSI Signal Processing	3	3	3	2.4	2.6	3
	Ш	60 PVL E3*	Professional Elective III						
П	'''	60 PVL E4*	Professional Elective IV						
		60 PVL 3P1	Project Work I	3	3	3	3	3	3
	IV	60 PVL 4P1	Project Work II	3	3	3	3	3	3

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215

(An Autonomous Institution affiliated to Anna University)

PROFESSIONAL CORE (PC)

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	60 PVL 101	Graph Theory and Optimization Techniques	PC	5	3	2	0	4	Nil
2.	60 PED 001	Research Methodology and IPR	RM	3	3	0	0	3	Nil
3.	60 PVL 103	Analog IC Design	PC	3	3	0	0	3	Semiconduct or Devices and Circuits and Linear IC Applications
4.	60 PVL 104	Digital CMOS VLSI Design	PC	3	3	0	0	3	Digital logic design, VLSI Design
5.	60 PVL 105	Advanced Digital System Design	PC	5	3	2	0	4	Digital Logic Design
6.	60 PVL 106	Advanced Embedded Computing	PC	3	3	0	0	3	Embedded Systems
7.	60 PVL1P1	VLSI Laboratory I	PC	4	0	0	4	2	Analog and Digital CMOS VLSI design
8.	60 PVL1P2	Analog IC Design Laboratory	PC	4	0	0	4	2	Semiconduct or Devices and Circuits and Linear IC Applications
9.	60 PVL 201	Design for Verification using UVM	PC	3	3	0	0	3	System Verilog
10.	60 PVL 202	Low Power VLSI Design	PC	3	3	0	0	3	Analog and Digital CMOS VLSI design
11.	60 PVL 203	RF Circuit Design	PC	3	3	0	0	3	RF Passive and Active Devices, Transmission Lines.
12.	60 PVL 204	VLSI Testing	PC	3	3	0	0	3	Analog and Digital CMOS VLSI design
13.	60 PVL 2P1	VLSI Laboratory II	PC	4	0	0	4	2	Basic Verilog HDL
14.	60 PVL 2P2	Term Paper and Seminar	CG	2	0	0	2	0	Nil
15.	60 PVL 301	VLSI Signal Processing	PC	3	3	0	0	3	Nil

PROFESSIONAL ELECTIVE (PE)

SEMESTER II, PROFESSIONAL ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	60 PVL E11	Nano Electronics	PE	3	3	0	0	3	Nil
2.	60 PVL E12	Linear Algebra	PE	3	3	0	0	3	Basic Linear Algebra
3.	60 PVL E13	Digital image Processing	PE	3	3	0	0	3	Nil
4.	60 PVL E14	IP based VLSI Design	PE	3	3	0	0	3	Digital CMOS VLSI Design
5.	60 PVL E15	Genetic algorithm for VLSI Design	PE	3	3	0	0	3	Digital CMOS VLSI Design
6.	60 PVL E16	Bio Signal Processing	PE	3	3	0	0	3	Digital Signal Processing

SEMESTER II, PROFESSIONAL ELECTIVE II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	60 PVL E21	VLSI for wireless communication	PE	3	3	0	0	3	Fundamentals of VLSI and Wireless Communication
2.	60 PVL E22	System On Chip	PE	3	3	0	0	3	Nil
3.	60 PVL E23	Machine Learning Techniques	PE	3	3	0	0	3	Nil
4.	60 PVL E24	FPGA based implementation of signal processing systems	PE	3	3	0	0	3	Digital Logic Design and Digital Signal processing
5.	60 PVL E25	Network on Chip	PE	3	3	0	0	3 Interconnection Networks	
6.	60 PVL E26	Wireless Sensor Networks	PE		3	0	0	3	Nil

SEMESTER III, PROFESSIONAL ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	60 PVL E31	DSP Structures for VLSI	PE	3	3	0	0	3	Signal processing
2.	60 PVL E32	Applied medical image processing	PE	3	3	0	0	3	Image processing
3.	60 PVL E33	Data Science and Engineering	PE	3	3	0	0	3	Linear algebra, Statistics
4.	60 PVL E34	ASIC Design	PE	3	3	0	0	3	Digital logic design
5.	60 PVL E35	Mixed Signal VLSI design	PE	3	3	0	0	3	Analog and digital CMOS design

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

SEMESTER III, PROFESSIONAL ELECTIVE IV

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	60 PVL E41	System Verilog	PE	5	3	0	2	4	Verilog
2.	60 PVL E42	HDL for IC design	PE	5	3	0	2	4	Verilog
3.	60 PVL E43	Deep learning	PE	5	3	0	2	4	Linear algebra
4.	60 PVL E44	Adaptive Signal Processing	PE	5	3	0	2	4	Signal processing
5.	60 PVL E45	MEMS system design	PE	5	3	0	2	4	Electronic Circuits

RESEARCH METHODOLOGY (RM)

S. No.	Course Code	Course Title	Category	Contact Periods	لــ	Т	Р	С	Prerequisite
1.	60 PED 001	Research Methodology and IPR	RM	3	3	0	0	3	Nil

AUDIT COURSES (I/II) (AC)

S. No	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	60 AT 001	English for Research Paper Writing	AC	2	2	0	0	0	Nil
2	60 AT 002	Disaster Management	AC	2	2	0	0	0	Nil
3.	60 AT 003	Constitution of India	AC	2	2	0	0	0	Nil

CAREER GUIDANCE COURSES (CG)

S. No.	Course Code	Course Title	Category	Contact Periods	اــ	Т	Р	C	Prerequisite
1.	60 PVL 2P2	Term Paper and Seminar	CG	2	0	0	2	0	Nil
2.	60 PVL 3P1	Project Work I	CG	12	0	0	12	6	Nil
4.	60 PVL 4P1	Project Work II	CG	24	0	0	24	12	Nil

SUMMARY

S.No			Cred	Total			
3.NO	Category	ı	II	III	IV	Credits	Percentage%
1.	PC	21	14	3	-	38	52.7
2.	PE	-	6	7	-	13	18.0
3.	RM	3	-	-	-	03	0.04
4.	CG	-	-	6	12	18	25.0
5.	AC	AC I	AC II	-	-	-	-
To	otal	24	20	16	12	72	100

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215

(An Autonomous Institution affiliated to Anna University)

SEMESTER I

S.No.	Course Code	Course Title Category		Contact Periods	L	Т	Р	C							
	THEORY														
1.	60 PVL 101	Graph Theory and Optimization Techniques	PC	5	3	2	0	4							
2.	60 PED 001	Research Methodology and IPR	RM	3	3	0	0	3							
3.	60 PVL 103	Analog IC Design	PC	3	3	0	0	3							
4.	60 PVL 104	Digital CMOS VLSI Design	PC	3	3	0	0	3							
5.	60 PVL 105	Advanced Digital System Design	PC	5	3	2	0	4							
6.	60 PVL 106	Advanced Embedded Computing	PC	3	3	0	0	3							

Passed in BoS Meeting held on 13/05/2023 Approved in Academic Council Meeting held on 03/06/2023

7.	60 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0
		PRACTICALS						
8.	60 PVL 1P1	VLSI Laboratory I	PC	4	0	0	4	2
9.	60 PVL 1P2	Analog IC Design Laboratory	PC	4	0	0	4	2
			TOTAL	32	20	4	8	24

SEMESTER II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	60 PVL 201	Design for Verification using UVM	PC	3	3	0	0	3
2.	60 PVL 202	Low Power VLSI Design	PC	3	3	0	0	3
3.	60 PVL 203	RF Circuit Design	PC	3	3	0	0	3
4.	60 PVL 204	VLSI Testing	PC	3	3	0	0	3
5.	60 PVL E1*	Professional Elective I	PE	3	3	0	0	3
6.	60 PVL E2*	Professional Elective II	PE	3	3	0	0	3
7.	60 PAC 002	Disaster Management	AC	2	2	0	0	0
		PRACTICALS						
8.	60 PVL 2P1	VLSI Laboratory II	PC	4	0	0	4	2
9.	60 PVL 2P2	Term Paper and Seminar	CG	2	0	0	2	0
			TOTAL	26	20	0	6	20

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	C
		THEORY						
1.	60 PVL 301	VLSI Signal Processing	PC	3	3	0	0	3
2.	60 PVL E3*	Professional Elective III	PE	3	3	0	0	3
3.	60 PVL E4*	Professional Elective IV	PE	5	3	0	2	4
		PRACTICALS						
4.	60 PVL 3P1	Project Work I	CG	12	0	0	12	6
			TOTAL	23	9	0	14	16

SEMESTER IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С		
	PRACTICALS									
1.	60 PVL 4P1	Project Work II	CG	24	0	0	24	12		
			TOTAL	24	0	0	24	12		

TOTALCREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE: 72

Note: PC-Professional Core Courses, PE-Professional Elective Courses, RM- Research Methodology, CG -Career Guidance Courses, AC- Audit Courses

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2022-2023 onwards)

FIRST SEMESTER

S.No	Course	Name of the Course	Duration of	Weightage of Marks			Minimum Marks for Pass in End Semester Exam	
	Code		Internal Exam	Continuous Assessment *	End Semester Exam	Max. Marks	End Semester Exam	Total
			TH	IEORY				
1.	60 PVL 101	Graph Theory and Optimization Techniques	2	40	60	100	45	100
2.	60 PED 001	Research Methodology and IPR	2	40	60	100	45	100
3.	60 PVL 103	Analog IC Design	2	40	60	100	45	100
4.	60 PVL 104	Digital CMOS VLSI Design	2	40	60	100	45	100
5.	60 PVL 105	Advanced Digital System Design	2	40	60	100	45	100
6.	60 PVL 106	Advanced Embedded Computing	2	40	60	100	45	100
7.	60 AT 001	English for Research Paper Writing	2	100	-	100	-	100
				CTICAL				
8.	60 PVL1P1	VLSI Laboratory I	3	60	40	100	45	100
9.	60 PVL1P2	Analog IC Design Laboratory	3	60	40	100	45	100

SECOND SEMESTER

S.No.	Course Code	Duration Name of the of		Weigh	tage of Mark	s	Minimum Marks for Pass in End Semester Exam	
5.NO.	Course Code	Course	Internal Exam Continuous Assessment * Semester Exam Marks		End Semester Exam	Total		
			TH	IEORY				
1.	60 PVL 201	Design for Verification using UVM	2	40	60	100	45	100
2.	60 PVL 202	Low Power VLSI Design	2	40	60	100	45	100
3.	60 PVL 203	RF Circuit	2	40	60	100	45	100

Passed in BoS Meeting held on 13/05/2023 Approved in Academic Council Meeting held on 03/06/2023 CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

		Design						
4.	60 PVL 204	VLSI Testing	2	40	60	100	45	100
5.	60 PVL E1*	Professional Elective I	2	40	60	100	45	100
6.	60 PVL E2*	Professional Elective II	2	40	60	100	45	100
7.	60 AT 002	Disaster Management	2	100	-	100	-	100
			PRA	CTICAL				
8.	60 PVL 2P1	VLSI Laboratory II	3	60	40	100	45	100
9.	60 PVL 2P2	Term Paper and Seminar	3	100	00	100	-	100

THIRD SEMESTER

S.No.	Course Code	Name of the	Duration of	Weightage of Marks			Minimum Marks for Pass in End Semester Exam	
3.NO.	Course Code	Course	Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total
			TH	IEORY				
1.	60 PVL 301	VLSI Signal Processing	2	40	60	100	45	100
2.	60 PVL E3*	Professional Elective III	2	40	60	100	45	100
3.	60 PVL E4*	Professional Elective IV	2	40	60	100	45	100
	·	·	PRA	CTICAL	•		·	
4.	60 PVL 3P1	Project Work I	2	100	00	100	_	100

FOURTH SEMESTER

S.No.	Course Code	Name of the Course	Duration of Internal Exam	Weigh Continuous Assessment	End Semester Exam **	s Max. Marks	Minimum M for Pass in Semeste Exam End Semester Exam	End
			PRA	CTICAL				
1.	60 PVL 4P1	Project Work II	2	60	40	100	45	100

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

^{**} End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for the award of terminal examination marks

60 PVL 101

GRAPH THEORY AND OPTIMIZATION TECHNIQUES

Category	L	Т	Р	Credit
PC	3	2	0	4

Objective

- To know and apply the fundamental concepts in graph theory.
- To learn the model problems using graphs and to solve these problems algorithmically.
- To expose the concepts of modeling and optimization for solving real world problems.
- To study a systematic procedure for determining the optimal combination of decisions of dynamic programming.
- To learn the mathematical foundations of the genetic algorithm and ant colony optimization in the field of communication engineering.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the basic terminology and some of the theory associated with	Remember, Understand,
	graphs.	Apply
CO2	Formulate graph theoretic models to solve real world problems.	Remember, Understand,
		Apply
CO3	Explain the linear programming principles and its conversion.	Remember, Understand,
		Apply
CO4	Conceptualize the principle of optimality and sub-optimization, formulatio	Remember, Understand,
	and computational procedure of dynamic programming.	Apply
CO5	Analyze the Genetic based machine learning and its applications.	Remember, Understand,
		Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	
CO2	3	3	2	2	2	
CO3	3	3	3	3	3	
CO4	3	3	3	3	3	
CO5	3	3	3	3	3	

1- low, 2- medium, 3- high

Bloom's Category Continuous Assessm (Marks)				End Sem Examination (Marks)
	1	2	Model Exam (Marks)	(Marks)
Remember (Re)	14	6	12	10
Understand (Un)	14	6	12	10
Apply (Ap)	32	48	76	80
Analyze (An)				
Evaluate (Ev)				
Creative (Cr)				
Total	60	60	100	100

K.S.Rangasamy College of Technology – Autonomous R 2022 60 PVL 101- GRAPH THEORY AND OPTIMIZATION TECHNIQUES									
	60) PVL 101- (SKAPH IH	M.E-VLSI Desi		TECHNIQUE	<u>s</u>		
Hours Week Credit Maximum Marks									
Semester	'	T	Р	Total hrs	C	CA	ES ES	Total	
I	3	2	0	60	4	40	60	100	
Basic Concepts In Graph Theory Undirected graph — Degree of a vertex - Degree sequence - Sub graphs - Vertex induced sub graphs - Complement of a graph - Self complementary graphs — Walk — Path — Connectivity — Eccentricity — Radius — Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique. Digraph — Orientation — Strongly connected digraphs — Weekly connected digraphs - Unilaterally connected digraphs - Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem.								s – igly [9]	
Prim's shortes	hms — Dep t path algori	thm — Dijks	stra's and Fl	dth first search loyd-Marshall. N orithm - Min-cut	latching — F	erfect matchin		[9]	
Linear Progra Formulation of method - Dual	f linear progi			phical method -	Simplex met	nod - Two phas	se method - Big	M- [9]	
programming	mming prob problem - Pi	lem - Pure a inciple of op	timality - B	nteger – Gomor ackward and foi ath network prol	ward induction	on methods - C	calculus metho	[9]	
GA for constra	thm — Worl	king Principl zation. Ant c	e — Compa olony optim	arison between nization - Ant's fo an problem - AC	oraging beha	vior and optimi	zation - Artificia	al lea	
						Total Hours:	45 + 15(Tutor	al) 60	
TextBook(s):									
1. Jonathar	L Gross an	d Jay Yeller	n, 'Graph Th	neory and its Ap	plications', C	hapman & Hall	l, New York, 20	05.	
2 Hamdy A	Taha, 'Ope	rations Res	earch. An Ir	ntroduction', Pea	arson Educat	ion, New Delhi	, 2014.		
Reference(s)									
1. West D E	3, 'Introduction	on To Graph	Theory', P	earson Education	on, New Delh	ni, 2007.			
2004.	2. KantiSwarup, P.K.Gupta, Man Mohan, 'Operations Research',12th Edition, Sultan Chand & Sons, New Del								
3. Kalyanm 2010.	oy Deb, 'Op	timization fo	r Engineerii	ng Design, Algo	rithms and E	xamples', Pren	tice Hall, New	De l hi,	
4. Marco De	origo and Th	omas Stutzl	e, 'Ant Cold	ony Optimization	n', Prentice H	all, New Delhi,	2005.		

Course Contents and Lecture Schedule

S. No	Topic	No. of Hours
1	Basic Concepts In Graph Theory	
1.1	Undirected graph, Degree of a vertex, Degree sequence	2
1.2	Sub graphs, Vertex induced sub graphs, Complement of a graph	1
1.3	Self complementary graphs, Walk, Path, Connectivity	1
1.4	Eccentricity, Radius, Diameter, Vertex and edge cuts, Vertex partition	1
1.5	Tutorial	2
1.6	Independent set, Clique, Digraph, Orientation, Strongly connected digraphs	1
1.7	Weekly connected digraphs, Unilaterally connected digraphs	1
1.8	Directed acyclic graph, Adjacency matrix, Incidence matrix of graphs, Trees, Spanning trees, Matrix tree theorem	1
1.9	Tutorial	2
2	Graph algorithms	
2.1	Search algorithms, Depth first search and breadth first search	2
2.2	Spanning tree algorithm	1
2.3	Kruskal's and Prim's shortest path algorithm	1
2.4	Dijkstra's and Floyd, Marshall	1
2.5	Tutorial	2
2.6	Matching, Perfect matching, Bipartite matching	1
2.7	Flow networks, Augmenting path algorithm	1
2.8	Min-cut and max-cut algorithms	1
2.9	Tutorial	2
3	Linear Programming	
3.1	Formulation of linear programming problem	1
3.2	Graphical method	2
3.3	Simplex method	1
3.4	Two phase method	1
3.5	Tutorial	2
3.6	Big M-method	1
3.7	Duality	1
3.8	Dual simplex method	1
3.9	Tutorial	2
4	Integer and Dynamic Programming	
4.1	Integer programming problem, Pure and mixed integer	1
4.2	Gomory's cutting plane algorithm	1
4.3	Dynamic programming problem, Principle of optimality	1
4.4	Backward and forward induction methods	1
4.5	Tutorial	2
4.6	Calculus method of solution, Tabular method of solution	2
4.7	Shortest path network problems	1
4.8	Applications in production	1
4.9	Tutorial	2
5	Nontraditional Optimization Algorithms	

S. No	Topic						
5.1	Genetic Algorithm, Comparison between GA and traditional method	2					
5.2	GA for constrained optimization	1					
5.3	Ant colony optimization, Ant's foraging behavior and optimization	2					
5.4	Tutorial	2					
5.5	Artificial ants and minimum cost paths	1					
5.6	Traveling salesman problem	1					
5.7	ACO algorithm for traveling salesman problem	1					
5.8	Tutorial	2					
	Total	60					

Course Designers

1. Mr. D.Senthil Raja -<u>senthilrajad@ksrct.ac.in</u>

60 PED 001	RESEARCH METHODOLOGY AND IPR	Category	٦	Т	Р	Credit
		RM	3	0	0	3

Objective(s)

- To understand the principles of research process.
- To develop knowledge in analytical skills for collection of research data.
- To understand the procedure in the preparation of reports.
- To accomplish basic idea about the process involved in intellectual property rights.
- To enlighten the process of patent filing.

Pre-requisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

CO1	To understand the research process and design.	Remember, Understand,
	The arrangement are recommended and according	Apply
CO2	To gain the knowledge about sources and collection of research data	Remember, Understand, Aanalyze
соз	To understand the procedure of data analysis, preparation of reports and checking plagiarism	Remember, Understand, Analyze
CO4	To gain the knowledge on Trade mark and functions of UNESCO in IPR	Remember, Understand, Apply
CO5	To enlighten the benefits, E-filing and Examinations related to patents	Remember, Understand, Apply

Mapping with Programme Outcomes

COURSE NAME	СО			F	0				PSO	
	CO	1	2	3	4	5	6	1	2	3
	CO1	3	3	2	2	2	2	3	1	3
Research	CO2	3	3	2	2	2	2	3	1	3
Methodology and	CO3	3	3	2	2	2	2	3	1	3
IPR	CO4	3	3	2	2	2	2	3	1	3
	CO5	3	3	2	2	2	2	3	1	3

1-low, 2- medium, 3- high

Bloom's Category	Continuous Ass (Mar		Model	End Semester Examination (Marks)
	1	2	Exam (Marks)	LXaiiiiiatioii (Marks)
Remember(Re)	10	10	20	30
Understand(Un)	20	20	40	30
Apply (Ap)	30	30	40	30
Analyze (An)	0	0	0	10
Evaluate(Ev)	0	0	0	0
Creative (Cr)	0	0	0	0
Total	60	60	100	100

K.S.Rangasamy College of Technology – Autonomous R2022										
60 PED 001 - RESEARCH METHODOLOGY AND IPR Common to all Branches										
Se	mester	<u> </u>	lours/Week	COII		Credit		laximum Marks		
	incoloi	L	T	Р	Total Hours C CA ES				Total	
	ı	3	0	0	45	3	40	60	100	
Res	earch D	<u> </u>					1 .0	1 00 1		
Ove	rview of stion, Qu	research pr alitative rese		vation studie	of Secondary an es, Experiments a ch					
Mea	suremer			•	nnaires and Inst	ruments, Sa	ampling and n	nethods. Data	- [9]	
Ove findi	rview of	g written re	Analysis, Hy		sting and Measu tion. Checks for					
Intel proc Righ	Intellectual Property Rights Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.									
of p	ents – ob atent ap	oplication, p	rocess E-fil	ling, Examir	cept, features of nation of patent nts, patent agent	, Grant of	patent, Revoc	ation, Equitabl		
								Total Hours	s 45	
Text	t Book(s	s):								
1.	David I.	Bainbridge,	"Intellectual	Property", L	ongman, 9th Edit	tion, 2012.				
	Education	on,	Schindler P	amela S an	id Sharma JK, '	'Business R	esearch Metho	ods", Tata Mc	Graw Hill	
1	erence(s	•								
1.	Chawla	H S., "Introd	luction to Inte	ellectual Pro	perty Rights", CE	SS PUB & DI	ST PVT Limite	d, INDIA, 2019		
	Catherin Press, 2		d, "Intellectu	ıal property:	: Patents, Trade	marks, Cop	yrights, Trade	Secrets", Entr	epreneur	
3.	David Hunt Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques," Wiley, 2007									
4.	4. Arun K. Narasani, Kankanala K.C., Radhakrishnan V., "Indian Patent Law and Practice", Oxford University 2010.									
ე.	2020.				ark - An Intellec					
					India, Statutory and practice", S			arliament, "Pro	fessional	

Course Content and Lecture Schedule

S.No.	Topics					
1.0	Research Design					
1.1	Overview of research process and design	1				
1.2	Use of Secondary and exploratory data to answer the research question	2				
1.3	Qualitative research	1				
1.4	Observation studies	1				
1.5	Experiments and Surveys	1				
1.6	Selection of the Right Medium and Journal for publication	2				
1.7	Translation of Research	1				
2.0	Data Collection and Sources					
2.1	Measurements, Measurement Scales	2				
2.2	Questionnaires and Instruments	2				
2.3	Sampling and methods	2				
2.4	Data - Preparing, Exploring, examining and displaying	3				
3.0	Data Analysis and Reporting					
3.1	Overview of Multivariate analysis	1				
3.2	Hypotheses testing and Measures of Association	2				
3.3	Presenting Insights	1				
3.4	Findings using written reports and oral presentation	2				
3.5	Checks for Plagiarism	1				
3.6	Falsification	1				
3.7	Fabrication, and Misrepresentation	1				
4.0	Intellectual Property Rights					
4.1	Intellectual Property – The concept of IPR	1				
4.2	Evolution and development of concept of IPR, IPR development process	2				
4.3	Trade secrets, utility Models, IPR & Bio diversity	2				
4.4	Role of WIPO and WTO in IPR establishments	1				
4.5	Right of Property, Common rules of IPR practices	1				
4.6	Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance	2				
5.0	Patents					
5.1	Patents – objectives and benefits of patent, Concept, features of patent	2				

5.2	Inventive step, Specification, Types of patent application	2
5.3	Process E-filling, Examination of patent	1
5.4	Grant of patent, Revocation	1
5.5	Equitable Assignments, Licences, Licensing of related patents	2
5.6	Patent agents, Registration of patent agents	1

Course Designer

Dr.A.Murugesan – murugesana@ksrct.ac.in

60 PVL 103	ANALOG IC DESIGN	Category	L	Т	Р	Credit
		PC	3	0	0	3

Objective

- Analog Circuits play a very crucial role in all electronic systems and due to continued miniaturization, many of the analog blocks are not getting realized in CMOS technology.
- To study the most important building blocks of all CMOS analog IC
- The basic principle of operation, the circuit choices and the trade-offs involved in the MOS transistor level design common to all analog CMOS ICs will be discussed in this course.
- The specific design issues related to single and multistage voltage, current and differential amplifiers, their output and impedance issues, bandwidth, feedback and stability will be dealt with in detail.
- To know the band gap references and temperature independent references

Prerequisite

Courses on Semiconductor Devices and Circuits and Linear IC Applications at UG Level

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design amplifiers to meet user specifications	Apply
CO2	Analyze the frequency and noise performance of amplifiers	Analyze
CO3	Design and analyze feedback amplifiers and one stage op amps	Apply
CO4	Design and analyze two stage op amps	Apply
CO5	Design and analyze current mirrors and current sinks with mos devices	Apply

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	3
CO2	3	3	3	2	2	3
CO3	3	3	3	2	2	3
CO4	3	3	3	2	2	3
CO5	3	3	3	2	2	3

1- low, 2- medium, 3- high

Bloom's Category	Continuous Assess	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	10	10	30
Understand(Un)	20	20	10
Apply (Ap)	20	20	30
Analyze (An)	10	10	15
Evaluate(Ev)	0	0	0
Creative (Cr)	10	10	15
Total	60	60	100

		K	.S.Rangasa	amy College	of Technol	ogy – Autor	omous R 2	022		
				60 PVL 10	3 – ANALO	G IC DESIGN	1			
				IV	I.E-VLSI Des	sign				
Son	nester	ŀ	Hours / Wee		Total	Credit		Maximum I	Marks	
Seli	ilestei	L	Т	Р	Hours	С	CA	ES	То	
		3	0	0	45	3	40	60	10	00
				in the syllabu						
number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the									on the	
				unit in the sy	llabus					
SINGLE STAGE AMPLIFIERS										
				cuits and me						
				d Cascade o						[9]
	•		et specified	SR, noise, g	ain, BW, ICN	/IR and powe	er dissipation	, voltage sw	ing, high	
		structures								
				RACTERIS				- "		
				nodes, frequ						[9]
			tages, statis	tical charact	eristics of no	ise, noise in	Single Stage	e amplifiers,	noise in	' '
	ential Am		CTACE OF	PERATIONA	I AMBUIEI	-DC				
							foodbook po	stuarka On	orational	
				dback circui gle stage Op						[9]
				gle stage Op ction, noise ir		stage Op Ai	rips, iriput ra	inge iimialid	nis, yairi	
				PENSATION		TAGE AMDI	IEIED			
		-		Stage Op A				nd Stage ar	nd Heina	
				ems, Phase						[9]
				Stage Op An					oution of	
		FERENCES		stage op 7 ii.	.po, oo. o	omponiounor.				
				irrors, Wilsor	n current sou	urce. Widlar	current sour	ce. cascade	current	
				e sink, curre						[9]
				AT current o				3 ,		
,		·			•			Tot	al hours	45
Text k	ook(s):									
1.	Behzad	Razavi, "Des	sign Of Anal	og CMOS In	tegrated Cire	cuits", Tata N	/IcGraw Hill,	2001.		
2.				sign Essenti						
Refer	ence(s):									
1.				log Integrate						
2.	Phillip E	Allen, Doug	las R .Holbe	erg, "Cmos A	nalog Circui	t Design", Ox	ford Univers	sity Press, 2	nd Edition,	
	2002.									
3.				ttp://www.ee						
4.	Jacob B	aker "CMOS	: Circuit Des	sign, Layout,	And Simula	tion, Wi <mark>le</mark> y IE	EEE Press, 3	Brd Edition, 2	010.	

Course Content and Lecture Schedule

S. No	Topic	No. of Hours
1	SINGLE STAGE AMPLIFIERS	
1.1	Basic MOS physics and equivalent circuits and models	1
1.2	CS, CG and Source Follower	1
1.3	Differential amplifier with active load	1
1.4	Cascade and Folded Cascade configurations with active load	1
1.5	Design of Differential and Cascade Amplifiers	1
1.6	Slew Rate, noise, gain, Bandwidth	1
1.7	ICMR and power dissipation	1
1.8	Voltage swing	1
1.9	High gain amplifier structures	1
2	HIGH FREQUENCY AND NOISE CHARACTERISTICS OF AMPLIFIERS	
2.1	Miller effect	1
2.2	Association of poles with nodes	1
2.3	Frequency response of CS, CG	1
2.4	Frequency response of Source Follower	1
2.5	Cascade Amplifier stages	1
2.6	Differential Amplifier stages	1
2.7	Statistical characteristics of noise	1
2.8	Noise in Single Stage amplifiers	1
2.9	Noise in Differential Amplifiers	1
3	FEEDBACK AND SINGLE STAGE OPERATIONAL AMPLIFIERS	
3.1	Properties and types of negative feedback circuits	1
3.2	Effect of loading in feedback networks	1
3.3	Operational amplifier performance parameters	1
3.4	Single stage Op Amps	1
3.5	Two stage Op Amps	1
3.6	Input range limitations and gain boosting	1
3.7	Slew rate, power supply rejection	1
3.8	Noise in Op Amps	1
4	STABILITY AND FREQUENCY COMPENSATION OF TWO STAGE AMPLIFIER	
4.1	Analysis of Two Stage Op Amp	1
4.2	Two Stage Op Amp Single Stage CMOS CS as Second Stage and Using Cascade Second Stage	2
4.3	Multiple Systems	1
4.4	Phase Margin	1
4.5	Frequency Compensation	1
4.6	Compensation of Two Stage Op Amps	1
4.7	Slewing In Two Stage Op Amps	1
4.8	Other Compensation Techniques	1

S. No	Topic			
5	BANDGAP REFERENCES			
5.1	Current sinks, sources and current mirrors	1		
5.2	Wilson current source, Widlar current source	1		
5.3	Cascade current source	1		
5.4	Design of high swing cascade sink	1		
5.5	Current amplifiers	1		
5.6	Supply independent biasing	1		
5.7	Temperature independent references	1		
5.8	PTAT and CTAT current generation	1		
5.9	Constant-gm biasing	1		
	Total	45		

Course Designers

1. Saravanan S

- saravanan.s@ksrct.ac.in

60 PVL 104	DIGITAL CMOS VLSI DESIGN	Category	L	Т	Р	Credit
		РС	3	0	0	3

Objective

- To introduce the transistor level design of all digital building blocks common to all CMOS microprocessors, network processors, digital backend of all wireless systems etc.
- To introduce the principles and design methodology in terms of the dominant circuit Tentative choices, constraints and performance measures
- To learn all important issues related to size, speed and power consumption
- To focus the CMOS data path design
- To describe the memory subsystems for CMOS circuits

Prerequisite

Digital logic design, VLSI Design

Course Outcomes

	3 4100 5 1110 5	
CO1	Use mathematical methods and circuit analysis models in analysis of CMOS digital circuits	Understand, Apply, Analysis
CO2	Create models of moderately sized static CMOS combinational circuits that realize specified digital functions and to optimize combinational circuit delay using RC delay models and logical effort	Remember, Understand, Apply
CO3	Design sequential logic at the transistor level and compare the tradeoffs of sequencing elements including flip-flops, transparent latches	Understand, Apply
CO4	Understand design methodology of arithmetic building blocks	Remember, Understand, Apply
CO5	Design functional units including ROM and SRAM	Remember, Understand, Apply

Mapping with Programme Outcomes

PO1	PO2	PO3	PO4	PO5	PO6			
3	3	2	2	3	3			
3	3	3	3	3	3			
3	3	3	3	3	3			
3	3	3	3	3	3			
3	3	3	3	3	3			

1- low, 2- medium, 3- high

100000mone i datom								
Bloom's Category	Continuous A	End Sem Examination						
Bioom o oatogory	1	2	(Marks)					
Remember(Re)	15	15	30					
Understand(Un)	15	10	20					
Apply (Ap)	20	25	30					
Analyze (An)	10	10	20					
Evaluate(Ev)	0	0	0					
Creative (Cr)	0	0	0					
Total	60	60	100					

K.S.Rangasamy College of Technology – Autonomous R 2022									
60 PVL 104 – Digital CMOS VLSI design									
M.E-VLSI Design									
Semester	Hours / Week			Total	Credit		Maximum Marks		
Semester	L	Т	Р	Hours	С	CA	ES	Total	
ı	3	0	0	45	3	40	60	100	
Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the									

number of hours for each unit depending upon the concepts and depth. Questions need not be asked based number of hours notified against each unit in the syllabus								
MOS	TRANSISTOR PRINCIPLES AND CMOS INVERTER FET characteristic under static and dynamic conditions, MOSFET secondary effects, Elmore constant, S inverter-static characteristic, dynamic characteristic, power, energy, and energy delay parameters, diagram and layout diagrams.	[10]						
COMBINATIONAL LOGIC CIRCUITS Static CMOS design, different styles of logic circuits, logical effort of complex gates, static and dynamic properties of complex gates, interconnect delay, dynamic logic gates								
SEQUENTIAL LOGIC CIRCUITS Static latches and registers, dynamic latches and registers, timing issues, pipelines, clocking strategies, non-bistable sequential circuits.								
	HMETIC BUILDING BLOCKS path circuits, architectures for adders, accumulators, multipliers, barrel shifters, speed, power and area offs.	[9]						
Men	IORY ARCHITECTURES nory architectures and Memory control circuits: Read-Only Memories, ROM cells, Read Write Memories //), dynamic memory design, 6 Transistor SRAM cell, sense amplifiers.	[6]						
	Total hours	45						
	book(s):							
1.	N.Weste, K. Eshraghian, "Principles Of CMOS VLSI Design", Addision Wesley, 2 nd Edition, 2018.	4!						
2.	2. Jan Rabaey, AnanthaChandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective", Prentice Hall Of India, 2nd Edition, Feb 2018							
Refe	rence(s):							
1.	M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 2012							
2.	Sung-Mo Kang & Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis And Design", Mcgraw-Hill	, 2019						
3.	Jacob Baker "CMOS: Circuit Design, Layout, And Simulation, Wiley IEEE Press, 3 rd Edition, 2010.							
4.	Yuan Taur and TakH.Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, 2016	3.						

Course Contents and Lecture Schedule

S.No	Topic	No.of Hours
1	MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER	
1.1	MOSFET characteristic under static and dynamic conditions	2
1.2	MOSFET secondary effects	2
1.3	Elmore constant	1
1.4	CMOS inverter-static characteristic	1
1.5	CMOS inverter-dynamic characteristic	1
1.6	Power, energy, and energy delay parameters	2
1.7	Stick diagram	1
1.8	Layout diagrams	2
2	COMBINATIONAL LOGIC CIRCUITS	•

CHAIRMAN BOARD OF STUDIES

Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

2.1	Static CMOS design	1
2.2	Different styles of logic circuits	2
2.3	Logical effort of complex gates	1
2.4	Static and dynamic properties of complex gates	2
2.5	Interconnect delay	1
2.6	Dynamic logic gates	2
3	SEQUENTIAL LOGIC CIRCUITS	
3.1	Static latches and registers	2
3.2	Dynamic latches and registers	2
3.3	Timing issues	1
3.4	Pipelines	1
3.5	Clocking strategies	1
3.6	Non-bistable sequential circuits	2
4	ARITHMETIC BUILDING BLOCKS	
4.1	Data path circuits	2
4.2	Architectures for adders	2
4.3	Accumulators	1
4.4	Multipliers	1
4.5	Barrel shifters	2
4.6	Speed, power and area tradeoffs	1
5	MEMORY ARCHITECTURES	
5.1	Memory architectures and Memory control circuits	1
5.2	Read-Only Memories	1
5.3	ROM cells, Read Write Memories (RAM)	1
5.4	Dynamic memory design	1
5.5	6 Transistor SRAM cell	1
5.6	Sense amplifiers	1
	Total	45

Course Designers

1. Mrs.R.Ramya-rramya@ksrct.ac.in

60 PVL 105 ADVA

ADVANCED DIGITAL SYSTEM DESIGN

Category	L	Т	Р	Credit
PC	3	2	0	4

Objective

- To design asynchronous sequential circuits
- To analyse hazards in asynchronous sequential circuits,
- To study the fault testing procedure for digital circuits.
- To learn about the architecture of programmable devices.
- To design and implement digital circuits using programming tools.

Prerequisite

Digital Logic Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design and analyze synchronous sequential circuits.	Remember, Understand
CO2	Analyze hazards in asynchronous sequential circuits.	Apply
CO3	Discuss the testing procedure for combinational circuit and PLA.	Apply, Analyse
CO4	Design PLD and ROM.	Apply, Analyse
CO5	Design and use programming tools for implementing digital circuits	Apply, Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3

¹⁻ low, 2- medium, 3- high

Bloom's Category	Continuous	s Assessment Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember (Re)	10	10	30
Understand (Un)	20	20	30
Apply (Ap)	30	30	30
Analyze (An)	0	0	10
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

	K	.S.Rangasa	my College	of Technol	ogy – Autor	omous R 2	022		
		60 PVL	105- ADVA	NCED DIGIT	AL SYSTEM	1 DESIGN			
			M	I.E-VLSI Des	ign				
Semester		Hours / Wee	k	Total	Credit		Maximum N	/larks	
Semester	L	T	Р	Hours	С	CA	ES	То	tal
I	3	2	0	60	4	40	60	10	00
Note: Hours n			•	-			•	•	
number of hou					d depth. Que	estions need	not be aske	ed based	on the
number of hou	irs notified a	gainst each ι	init in the sy	ilabus					1
Sequential Ci	_								
Analysis of Clo									[12]
Assignment ar	nd Reduction	n-Design of S	ynchronous	Sequential C	Circuits Desig	gn of Iterative	e Circuits-AS	M Chart	
Asynchronou	s Sequentia	al Circuit De	sign						
Analysis of As									[12]
Table and Pro									['-]
Essential haza				ronous Circu	<u> its – Design</u>	ing Vending	Machine Co	ntroller.	
Fault Diagnos				a ala an Diffe	NA-41	-l	l:4l D A	Lana althau i	
Fault Table Me							•	•	[12]
— Tolerance Techniques – The Compact Algorithm – Fault in FLA – Test Generation - DFT Schemes – Built									
in Self Test Synchronous	Design Hei	ina Braaram	mahla Davi	iooo and Cur	stom Docine	. Hoina VIII	<u> </u>		
Programmable								ar Aidad	
Design – Real									[12]
Xilinx 4000. VI									['-]

I iming Analys	is
----------------	----

ROM timings - Static RAM timing - Synchronous Static RAM and it's timing - Dynamic RAM timing, Complex Programmable Logic Devices - Logic Analyzer Basic Architecture - Internal structure - Data display - Setup and Control - Clocking and Sampling

Total hours

[12]

60

Text book(s):

- 1. Donald G. Givone, 'Digital principles and Design', Tata McGraw Hill, 2016.
 - John M Yarbrough, 'Digital Logic applications and Design', Thomson Learning, 2017.

Reference(s):

- 1. Nripendra N Biswas, 'Logic Design Theory', Prentice Hall of India Private Ltd., 2016.
- 2. Charles H. Roth Jr., 'Digital System Design using VHDL', Thomson Learning, 2016.
- 3. J.F.Wakerly, 'Digital Design Principles and Practices', 4th Edition, Pearson Education, 2017.
- 4. J.F.Wakerly, 'Digital Design: Principles and Practices', 3rd Edition, Pearson Education, 2016.

Course Contents and Lecture Schedule

and Simulation of VHDL Code - Modeling using VHDL

S. No	Торіс	No.of Hours
1	Sequential Circuit Design	
1.1	Analysis of Clocked Synchronous Sequential Circuits and Modelling	2
1.2	State Diagram	1
1.3	State Table, State Table Assignment and Reduction	2
1.4	Design of Synchronous Sequential Circuits	2
1.5	Design of Iterative Circuits	2
1.6	ASM Chart	2
2	Asynchronous Sequential Circuit Design	

2.1	Analysis of Asynchronous Sequential Circuit	2				
2.2	Flow Table Reduction	2				
2.3	Races-State Assignment	1				
2.4	Transition Table and Problems in Transition Table.	1				
2.5	Design of Asynchronous Sequential	1				
2.6	Circuit - Static, Dynamic and Essential	2				
2.7	hazards	1				
2.8	Mixed Operating Mode Asynchronous Circuits	1				
2.9	Designing Vending Machine Controller	1				
3	Fault Diagnosis and Testability Algorithms					
3.1	Fault Table Method	1				
3.2	Path Sensitization Method	1				
3.3	Boolean Difference Method	2				
3.4	Kohavi Algorithm D Algorithm	2				
3.5	Tolerance Techniques	2				
3.6	The Compact Algorithm	1				
3.7	Fault in PLA	1				
3.8	Test Generation	1				
3.9	DFT Schemes – Built in Self Test	1				
4	Synchronous Design Using Programmable Devices and System Design Using VHDL					
4.1	Programmable Logic Devices	1				
4.2	Designing a Synchronous Sequential Circuit using PLA/ PAL Computer Aided Design	2				
4.3	Realization of Finite State Machine using PLD.FPGA	1				
4.4	Xilinx FPGA	1				
4.5	Xilinx 2000 - Xilinx 3000 - Xilinx 4000.	1				
4.6	VHDL Description of Combinational Circuits and sequential circuit.	2				
4.7	VHDL Operators	2				
4.8	Compilation and Simulation of VHDL Code – Modeling using VHDL	2				
5	Timing Analysis					
5.1	ROM timings	2				
5.2	Static RAM timing	2				
5.3	Synchronous Static RAM and it's timing	2				
5.4	Dynamic RAM timing	1				
5.5	Complex Programmable Logic Devices	1				
5.6	Logic Analyzer Basic Architecture	1				
5.7	Internal structure	1				
5.8	Data display	1				
5.9	Setup and Control - Clocking and Sampling	1				

Course Designers

1. Dr.S.MALARKHODI - malarkhodi@ksrct.ac.in

60 PVL 106			Category	L	Т	Р	Credit
------------	--	--	----------	---	---	---	--------

ADVANCED EMBEDDED COMPUTING

PC	3	0	0	3	_
----	---	---	---	---	---

Objective

- To impart the knowledge of the Embedded design
- To learn and apply embedded networks in different application
- To study the design methodologies of an embedded system
- To know the basics of embedded product design
- To introduce the embedded product lifecycle

Prerequisite

Embedded Systems

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire knowledge of embedded system design	Remember,
		Understand
CO2	Describe the embedded network systems and architectures	Remember,
		Understand
CO3	Describe the Embedded system with different system design techniques	Remember, Apply
CO4	Design and develop an embedded product	Analyse, Apply
CO5	Develop the product life cycle of an electronic product	Analyse, Apply

Mapping with Programme Outcomes

	5								
COs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3		3						
CO2	3		3						
CO3	3	3	3	3	3				
CO4	3	3	3	3	3	2			
CO5	3	3	3	3	3				
1- low 2- modi	um 3-hiah			·					

1- low, 2- medium, 3- high

Bloom's Category	Continuous A	End Sem Examination	
Bioom 3 oategory	1	2	(Marks)
Remember (Re)	20	10	30
Understand (Un)	20	20	30
Apply (Ap)	20	20	30
Analyze (An)	0	10	10
Evaluate (Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

K.S.Rangasamy College of Technology – Autonomous R 2022										
	60 PVL 106 - ADVANCED EMBEDDED COMPUTING									
			IV	I.E-VLSI Des	sign					
Semester		Hours / Wee	k	Total	Credit		Maximum M	larks		
Semester	L	Т	Р	Hours	С	CA	ES	То	tal	
I	3	0	0	45	3	40	60	10)0	
Note: Hours n number of hou number of hou	irs for each	unit dependir	ng upon the	concepts an						
Structure of Embedded Systems Core – Memory – Sensors and Actuators – Communication Interface – Embedded Firmware – Other system components – Characteristics and Quality Attributes of Embedded System								[9]		
Networks Distributed Embedded Architectures - Networks for Embedded Systems - Network Based Design - Internet- Enabled Systems - Vehicles as Networks - Sensor Networks								[9]		
System Design Techniques Design Methodologies - Requirements Analysis – Specifications - System Analysis and Architecture Design - Quality Assurance – Hardware software co-design and program modelling								[9]		
Design and Development of Embedded Product Embedded Hardware Design and Development – Embedded Firmware Development – Integration and testing of Embedded hardware and firmware – Embedded system development environment								[9]		
Embedded pr Introduction to Embedded OS Bottlenecks	EDLC - O	bjectives – c	lifferent pha						[9]	

Text book(s):

- 1. Introduction to Embedded Systems by Shibu K.V., Tata Mcgraw Hill Education (India) Private Limited, 2009
- 2. Computers as Components Principles of Embedded Computing System Design by Wayne Wolf, Second Edition, Elsevier.

Reference(s):

- 1. Embedded system-Architecture, Programming, Design by Rajkamal, TMH,2011.
- 2. Embedded Systems-An Integrated Approach by Lyla B Das ,Pearson, 2013

Course Contents and Lecture Schedule

S.No	Topic	No. of Hours
1	Structure of Embedded Systems	
1.1	Core	1
1.2	Memory	1
1.3	Sensors and Actuators	1
1.4	Communication Interface	2
1.5	Embedded Firmware	1
1.6	Other system components	1
1.7	Characteristics and Quality Attributes of Embedded System	2
2	Networks	

Total hours

2.1	Distributed Embedded Architectures	2
2.2	Networks for Embedded Systems	2
2.3	Network Based Design	2
2.4	Internet-Enabled Systems	1
2.5	Vehicles as Networks	1
2.6	Sensor Networks	1
3	System Design Techniques	
3.1	Design Methodologies	2
3.2	Requirements Analysis	1
3.3	Specifications	1
3.4	System Analysis and Architecture Design	2
3.5	Quality Assurance	1
3.6	Hardware software co-design and program modelling	1
4	Design and Development of Embedded Product	
4.1	Embedded Hardware Design and Development	3
4.2	Embedded Firmware Development	2
4.3	Integration and testing of Embedded hardware and firmware	2
4.4	Embedded system development environment	2
5	Embedded product development Life Cycle	
5.1	Introduction to EDLC	1
5.2	Objectives	1
5.3	Different phases of EDLC	1
5.4	ELDC Approaches	1
5.5	Processor trends	1
5.6	Embedded OS Trends	1
5.7	Development language Trends	1
5.8	Open standards, framework and alliances	1
5.9	Bottlenecks	1
	Total	45

Course Designers

- 1. Dr.C.Rajasekaran rajasekaran@ksrct.ac.in
- 2. Mr.K.Raguvaran raguvaran@ksrct.ac.in

60 PVL 1P1	VLSI Laboratory I

Category	L	Т	Р	Credit
PC	0	0	4	2

Objective

- To help the engineers to design the system with Verilog Hardware Description Language
- To practice for writing synthesizable RTL models that work correctly in both simulation and synthesis with FPGA.
- To design various VLSI subsystem using Verilog Hardware Description Language
- To develop prototype systems using FPGA.
- To analyse all important issues related to size, speed and power consumption using VLSI EDA tools

Prerequisite

Analog and Digital CMOS VLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Use EDA tool to design complex combinational and sequential circuits	Create
CO2	Design sequential circuits using Verilog HDL	Create
CO3	Analyse various adder & multiplier subsystem using Verilog HDL	Analyse, Create
CO4	Demonstrate FPGA implementation of various digital logic circuits	Create
CO5	Develop and prototype digital systems design using FPGA	Create

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3	3	3	3
CO2	3		3	3	3	3
CO3	3		3	3	3	3
CO4	3		3	3	3	3
CO5	3		3	3	3	3

1- low, 2- medium, 3- high

K.S.Rangasamy College of Technology – Autonomous R2022 60 PVL 1P1 – VLSI Laboratory I

M.E-VLSI Design

Semester	Hours / Week			Total hrs	Credit	Maximum Marks		
	L	Т	Р	Total IIIS	С	CA	ES	Total
	0	0	4	60	2	60	40	100

- 1. Design and verification of Combinational Circuits using Verilog HDL
- 2. Design and verification of Sequential Circuits using Verilog HDL
- 3. Design, simulate and synthesis of Finite State Machine using Verilog HDL
- 4. Design of Low Power, High Speed VLSI Adder Subsystems
- 5. Design of Low Power, High Speed VLSI Multiplier Subsystems
- 6. Design of Low power filter using Verilog HDL
- 7. Implement ALU using FPGA
- 8. Implement Image processing algorithm on FPGA through system generator
- 9. Implement smart home system using FPGA
- 10. Implement Health Monitoring System using FPGA

Course Designers

1. Mrs.C.Saranya – saranyac@ksrct.ac.in

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

60 PVL 1P2

ANALOG IC DESIGN LABOROTARY

Category	L	Т	Р	Credit
PC	0	0	4	2

Objective

- Carry out a detailed analog circuit design starting with transistor characterization and finally realizing an IA design.
- At various stages of design, exposure to state of art CAD VLSI tool in various phases of experiments designed
- To bring out the key aspects of each important module in the CAD tool including the simulation
- To design differential amplifier and analyze the performance
- To design layout, LVS and parasitic extracted simulation using CAD tools

Prerequisite

Courses on Semiconductor Devices and Circuits and Linear IC Applications at UG Level

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design digital and analog circuit using CMOS given a design specification.	Apply
CO2	Design and carry out time domain and frequency domain simulations of simple analog building blocks, study the pole zero behaviors and compute the input/output impedances	Apply
CO3	Develop layout for the CMOS circuit	Apply
CO4	Analyze the performance of different amplifiers	Apply
CO5	Use EDA tools for Circuit Design	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	2	3
CO3	3	3	3	3	2	3
CO4	3	3	3	3	2	3
CO5	3	3	3	3	2	3

1- low, 2- medium, 3- high

K.S.Rangasamy College of Technology – Autonomous R 2022

60 PVL 1P2-ANALOG IC DESIGN LABORATORY

M.E-VLSI Design

Semester		Hours / We	ek	Total	Credit	Maximum Marks			
	L	Т	Р	Hours	С	CA	ES	Total	
I	0	0	4	60	2	60	40	100	

- 1. Extraction of process parameters of CMOS process transistors
 - a. Plot I_D vs. V_{GS} at different drain voltages for NMOS, PMOS.
 - b. Plot I_D vs. V_{GS} at particular drain voltage for NMOS, PMOS and determine Vt.
 - c. Plot log I_D vs. V_{GS} at particular gate voltage for NMOS, PMOS and determine I_{OFF} and subthreshold slope.
 - d. Plot I_D vs. V_{DS} at different gate voltages for NMOS, PMOS and determine Channel length modulation factor.
 - e. Extract V_{th} of NMOS/PMOS transistors (short channel and long channel). Use V_{DS} of appropriate voltage To extract V_{th} use the following procedure.
 - i. Plot g_m vs V_{GS} using SPICE and obtain peak g_m point.
 - ii. Plot $y=I_D/(g_m)$ as a function of V_{GS} using SPICE.
 - iii. Use SPICE to plot tangent line passing through peak gm point in y (V_{GS}) plane and determine V_{th} .
 - f. Plot lo vs. Vos at different drain voltages for NMOS, PMOS, plot DC load line and calculate gm, gds, gm/gds, and unity gain frequency. Tabulate result according to technologies and comment on it.
- 2. CMOS inverter design and performance analysis
 - a. i. Plot VTC curve for CMOS inverter and thereon plot dV_{out} vs. dV_{in}, and determine transition voltage and gain g. Calculate V_{IL}, V_{IH}, NM_H, NM_L for the inverter.
 - ii. Plot VTC for CMOS inverter with varying V_{DD}.
 - iii. Plot VTC for CMOS inverter with varying device ratio.
- b. Perform transient analysis of CMOS inverter with no load and with load and determine propagation delay t_{pHL} , t_{pLH} , 20%-to-80% rise time t_r and 80%-to-20% fall time t_f .
- c. Perform AC analysis of CMOS inverter with fanout 0 and fanout 1.
- 3. Use spice to build a three stage and five stage ring oscillator circuit and compare its frequencies. Use FFT and verify the amplitude and frequency components in the spectrum.
- 4. Single stage amplifier design and performance analysis
 - a. Plot small signal voltage gain of the minimum-size inverter in the technology chosen as a function of input DC voltage. Determine the small signal voltage gain at the switching point using spice and compare the values for two different process transistors.
 - b. Consider a simple CS amplifier with active load, with NMOS transistor as driver and PMOS transistor as load.
 - i. Establish a test bench to achieve VDSQ=VDD/2.
 - ii. Calculate input bias voltage for a given bias current.
 - iii. Use spice and obtain the bias current. Compare with the theoretical value
 - iv. Determine small signal voltage gain, -3dB BW and GBW of the amplifier
 - v. using small signal analysis in spice, considering load capacitance.
 - vi. Plot step response of the amplifier with a specific input pulse amplitude.
 - vii. Derive time constant of the output and compare it with the time constant resulted from -3dB Band Width
 - viii. Use spice to determine input voltage range of the amplifier

5. Three OPAMP Instrumentation Amplifier (INA).

Use proper values of resistors to get a three OPAMP INA with differential-mode voltage gain=10. Consider voltage gain=2 for the first stage and voltage gain=5 for the second stage.

- i. Draw the schematic of op-amp macro model.
- ii. Draw the schematic of INA.
- iii. Obtain parameters of the op-amp macro model such that it meets a given specification for:
 - i. low-frequency voltage gain,
 - ii. unity gain BW (fu),
 - iii. input capacitance,
 - iv. output resistance,
 - v. CMRR
- iv. Draw schematic diagram of CMRR simulation setup.
- v. Simulate CMRR of INA using AC analysis (it's expected to be around 6dB below CMRR of OPAMP).
- vi. Plot CMRR of the INA versus resistor mismatches (for resistors of second stage only) changing from -5% to +5% (use AC analysis). Generate a separate plot for mismatch in each resistor pair. Explain how CMRR of OPAMP changes with resistor mismatches.
- vii. Repeat (iii) to (vi) by considering CMRR of all OPAMPs with another low frequency gain setting.
- 6. Use Layout editor.
 - a. Draw layout of a minimum size inverter using transistors from CMOS process library. Use Metal-1 as interconnect line between inverters.
 - b. Run DRC, LVS and RC extraction. Make sure there is no DRC error.
 - c. Extract the netlist. Use extracted netlist and obtain t_{pHL}, t_{pLH} for the inverter using Spice.
 - d. Use a specific interconnect length and connect and connect three inverters in a chain.
 - e. Extract the new netlist and obtain teat and tee of the middle inverter.
 - f. Compare new values of delay times with corresponding values obtained in part 'c'.
- 7. Design a differential amplifier with resistive load using transistors from CMOS process library that meets a given specification for the following parameter
 - a. low-frequency voltage gain,
 - b. unity gain BW (fu),
 - c. Power dissipation
 - i. Perform DC analysis and determine input common mode range and compare with the theoretical values.
 - ii. Perform time domain simulation and verify low frequency gain.
 - iii. Perform AC analysis and verify.

Course Designers

1. Saravanan S- saravanan.s@ksrct.ac.in

60 PVL 201

DESIGN AND VERIFICATION USING UVM

PC

Category	L	т	Р	Credit
PC	3	0	0	3

Objective

This course aims

- To provide the students, a complete understanding on UVM testing
- To become proficient at UVM verification
- To Know about the verification components used and to build it
- To describe the register layer classes and to generate it
- To learn all peripheral bus test benches and its advanced level

Prerequisite

System Verilog

Course Outcomes

On the successful completion of the course, students will be able to

	•	
CO1	Understand the basic concepts of two methodologies UVM	Remember,
		Understand
CO2	Build actual verification components	Apply
CO3	Generate the register layer classes	Apply
CO4	Code test benches using UVM	Apply
CO5	Understand advanced peripheral bus test benches	Apply

11 3						
COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3	3		3
CO2	3		3	3		3
CO3	3		3	3		3
CO4	3		3	3		3
CO5	3		3	3		3
4 1 0						

¹⁻ low, 2- medium, 3- high

Bloom's Category	Continuous Assessment Tests (Marks)		End Sem Examination
	1	2	(Marks)
Remember(Re)	10	10	30
Understand(Un)	20	20	30
Apply (Ap)	30	30	30
Analyze (An)	0	0	10
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

K.S.Rangasamy College of Technology–Autonomous R2022									
60 PVL 201 – DESIGN FOR VERIFICATION USING UVM									
	M.E-VLSI Design Hours/Week — Credit Maximum Marks								
Ser	nester	1	10urs/vv ee	K P	Total hrs	Credit C			Total
	II	3	0	0	45	3	40	60	100
Introduction									
Overview- The Typical UVM Testbench Architecture- The UVM Class Library-Transaction-Level Modeling (TLM) -Overview- TLM, TLM-1, and TLM-2.0 -TLM-1 Implementation- TLM-2.0 Implementation									ng [9]
Developing Reusable Verification Components Modeling Data Items for Generation - Transaction-Level Components - Creating the Driver - Creating the Sequencer - Connecting the Driver and Sequencer - Creating the Monitor - Instantiating Components-Creating the Agent - Creating the Environment - Enabling Scenario Creation - Managing of Test-Implementing Checks and Coverage								ts-	
Crea Verifi Tests	ting a To cation Co s- Virtual	omponent C Sequences-	nvironment onfiguratio · Checking	- Instantiat n - Creating for DUT Co	ing Verification g and Selecting orrectness- Sco	a User-Defi	ned Test – Cr	eating Meaning	ful [9]
Using a Ve	g The Re		Classes -	Back-Door	Access -Specia egister Model-				
Assignment in Test benches Assignment, APB: Protocol, Test bench Architecture, Driver and Sequencer, Monitor, Agent and Env; Creating Sequences, Building Test, Design and Testing of Top Module.							[9]		
								Total Hou	rs 45
Text Book(s):									
1. https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.1.pdf									
2.		/ww.udemy.	com/cours	e/learn-ovn	n-uvm/				
	rence(s):								
1. http://www.testbench.in/ot_00_index.html									
2.	http://wv	ww.testbenc	h.in/UT_00	_INDEX.ht	ml				

Course Contents and Lecture Schedule

S.No	Topic	No. of Hours
1	Introduction to UVM	
1.1	Overview	1
1.2	Typical UVM Testbench Architecture	1
1.3	UVM Class Library	1
1.4	Transaction-Level Modeling - Overview	1
1.5	TLM, TLM-1	2
1.6	TLM-2.0	1
1.7	TLM-1 Implementation	1
1.8	TLM-2.0 Implementation	1
2	Developing Reusable Verification Components	

S.No	Topic	No. of Hours
2.1	Modeling Data Items for Generation	1
2.2	Transaction-Level Components	1
2.3	Creating the Driver	1
2.4	Creating the Sequencer	1
2.5	Connecting the Driver and Sequencer, Creating the Monitor	1
2.6	Instantiating Components, Creating the Agent	1
2.7	Creating the Environment	1
2.8	Enabling Scenario Creation	1
2.9	Managing of Test-Implementing Checks and Coverage	1
3	UVM USING VERIFICATION COMPONENTS	
3.1	Creating a Top-Level Environment	1
3.2	Instantiating Verification Components	1
3.3	Creating Test Classes	1
3.4	Verification Component Configuration	1
3.5	Creating and Selecting a User-Defined Test	1
3.6	Creating Meaningful Tests- Virtual Sequences	1
3.7	Checking for DUT Correctness	1
3.8	Scoreboards	1
3.9	Implementing a Coverage Model	1
4	UVM using the Register Layer Classes	
4.1	Using The Register Layer Classes	1
4.2	Back-Door Access	1
4.3	Special Registers	1
4.4	Integrating a Register Model in a Verification Environment	2
4.5	Integrating a Register Model	2
4.6	Randomizing Field Values	1
4.7	PreDefined Sequences	1
5	Assignment in Test benches	
5.1	Assignment	1
5.2	APB: Protocol	1
5.3	Test bench Architecture	1
5.4	Driver and Sequencer	1
5.5	Monitor, Agent and Env	1
5.6	Creating Sequences	1
5.7	Building Test	1
5.8	Design and Testing of Top Module	2
	Total	45

1.Mr.S.Pradeep - pradeeps@ksrct.ac.in

60 PVL 202	LOW POWER VLSI DESIGN

Category L T P Credit

PC 3 0

- To identify sources of power in an IC
- To identify the power reduction techniques based on technology independent and technology dependent methods
- To identify suitable techniques to reduce the power dissipation
- To estimate power dissipation of various MOS logic circuits
- To develop algorithms for low power dissipation

Prerequisite

Analog and Digital CMOS VLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Find the power dissipation of MOS circuits	Remember, Understand
CO2	Design and analyze various MOS logic circuits	Remember, Understand
CO3	Apply low power techniques for low power dissipation	Remember, Apply, Analyse
CO4	Estimate the power dissipation of ICs	Remember, Apply
CO5	Develop algorithms to reduce power dissipation by software	Remember, Apply

Mapping with Programme Outcomes

	-					
COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1			3			3
CO2	3		3	2		3
CO3			3			3
CO4			3			3
CO5	3		3	3		3

¹⁻ low, 2- medium, 3- high

Bloom's Category		Assessment Tests Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember (Re)	15	15	30
Understand (Un)	10	10	20
Apply (Ap)	20	20	30
Analyze (An)	15	15	20
Evaluate (Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

		K.S	3.Rangasamy	College of	Technology	– Autonom	ous R 2022		
	60 PVL 202 – LOW POWER VLSI DESIGN								
					VLSI Design				
Ser	mester		Hours / Wee		Total	Credit		ximum Marks	
		L	Т	Р	Hours	С	CA	ES	Total
	II	3	0	0	45	3	40	60	100
		PATION IN							
			er – Sources c		ısumption — F	Physics of Po	wer Dissipat	ion in CMOS	[9]
			ple of Low Po	wer Design.					
		MIZATION							
			ation – Circuit						[9]
		vel Low Pov	verDesign – \	/LSI Subsys	tem Design o	of Adders, Mu	ıltipliers, PLL	., Low	[0]
	r Design								
			CMOS CIRC				_		
			iques for Low						[9]
			ential Logic, N						[[
			nniques – Phy	⁄sical Design	<u>, Floor Plann</u>	ing, Placeme	ent and Routi	ng.	
	ER ESTI		-						
							navioral Leve	I, –Logic Powe	r [9]
			wer Analysis						
			ARE DESIGN					Danima fa	[0]
		.ow Power –	Benaviorai L	evei i ransto	rm –Algorithi	ns for Low P	ower – Soπv	vare Design fo	r [9]
LOW F	Power.							Total hours	3 45
Text	book(s):							Total Hours	9 43
1,		Roy and S.C	C.Prasad, "Lov	v Power CM	OS VLSI Circ	cuit Design".	Wiley, 2000		
2.							111107, 2000		
	2. J.B.Kulo and J.H Lou, "Low Voltage CMOS VLSI Circuits", Wiley 1999. Reference(s):								
	James R Kulo, Shih-Chia Lin, "Low Voltage SOLCMOS VLSL Devices and Circuite", John Wiley and Sons								
1. Inc. 2001									
2. J.Rabaey, "Low Power Design Essentials (Integrated Circuits and Systems)", Springer, 2009									
_									on-
ა.	David Flynn, Rob Aitken, Alan Gibbons, Kaijian Shi, "Low Power Methodology Manual: For System-on-Chip Design (Integrated Circuits and Systems)" Springer, 2008.								
4.							mbridge Uni	versity Press,	2016.

S. No	Topic	No. of Hours
1	POWER DISSIPATION IN CMOS	
1.1	Hierarchy of Limits of Power	2
1.2	Sources of Power Consumption	3
1.3	Physics of Power Dissipation in CMOS FET Devices	3
1.4	Basic Principle of Low Power Design	1
2	POWER OPTIMIZATION	
2.1	Logic Level Power Optimization	2
2.2	Circuit Level Low Power Design	2
2.3	Gate Level Low Power Design	1
2.4	Architecture Level Low Power Design	2
2.5	VLSI Subsystem Design of Adders, Multipliers, PLL, Low Power Design	2
3	DESIGN OF LOW POWER CMOS CIRCUITS	•
3.1	Computer Arithmetic Techniques for Low Power System	1

3.2	Reducing Power Consumption in Combinational Logic, Sequential Logic, Memories	2
3.3	Low Power Clock	2
3.4	Advanced Techniques	1
3.5	Special Techniques, Adiabatic Techniques	2
3.6	Physical Design, Floor Planning, Placement and Routing	1
4	POWER ESTIMATION	
4.1	Power Estimation Techniques	1
4.2	Circuit Level, Gate Level	2
4.3	Architecture Level, Behavioral Level	2
4.4	Logic Power Estimation	2
4.5	Simulation Power Analysis	1
4.6	Probabilistic Power Analysis	1
5	SYNTHESIS AND SOFTWARE DESIGN FOR LOW POWER CMOS CIRCUITS	
5.1	Synthesis for Low Power	2
5.2	Behavioral Level Transform	3
5.3	Algorithms for Low Power	2
5.4	Software Design for Low Power	2
	Total	45

1. Mrs.C.Saranya-saranyac@ksrct.ac.in

60 PVL 203	RF CIRCUIT DESIGN	Category	L	Т
		PC	3	0

- To introduce the principles of operation and design principles of important blocks like Low Noise Amplifiers
- To study the concepts of Phase Locked Loop Synthesizers
- To study the feedback systems and types of amplifiers
- To learn the concepts of Mixers and Oscillators
- To learn impedance matching circuits in RF domain

Prerequisite

RF Passive and Active Devices, Transmission Lines.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the basic principles of MOSFET physics, transceiver specifications and Architectures.	Remember, Understand Apply
CO2	Discuss the principle of impedance matching and amplifiers	Remember, Understand Apply
СОЗ	Describe the working principle of feedback systems and power amplifiers	Understand Apply
CO4	Explain the configuration of RF filter design, mixers and oscillators	Understand Analyze
CO5	Describe the concepts of PLL and Frequency Synthesizers.	Remember, Understand Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	3	3			
CO2	3	3	3	3	
CO3	3	3	3	3	
CO4	3	3	3	3	2
CO5	3				2

1- low, 2- medium, 3- high

Assessment Pattern

/ toodomont i attorn									
Bloom's Category		Assessment Tests Marks)	End Sem Examination						
Diooni s category	1	2	(Marks)						
Remember (Re)	10	10	20						
Understand (Un)	15	15	30						
Apply (Ap)	20	20	30						
Analyze (An)	15	15	20						
Evaluate (Ev)	0	0	0						
Creative (Cr)	0	0	0						
Total	60	60	100						

Р

0

Credit

3

	K.S	.Rangasam	y College of	Technolog	y – Autonon	nous R 2022	2	
		6	60 PVL 203-	RF CIRCUI	T DESIGN			
				-VLSI Desig				
Semester		lours / Weel		Total	Credit		aximum Mark	
"	L	T	P	Hours	C	CA	ES	Total
CMOS Dhyseis	3	0	0	45	3	40	60	100
CMOS Physic Introduction to						o Two por	t Noice	
theory - Noise		-				•		
_	_		=			-		[9]
distribution ov			-		-			
Low IF Receiv	er Architectu	res Direct up	conversion	rransmiller	- Two step up	p conversion	l	
Transmitter.	_4_1_	A 1:6:						
Impedance M	_	-	10					
S -parameters								[9]
Common Gate		•						
enhancement			-			_	ended	
and Differentia				nd Source D	egeneration I	LNAs.		
Feedback Sys		-						
Stability of fee	-		-					[9]
Frequency doi			•					
amplifiers - Po			n Technique	s - Efficienc	y boosting ted	chniques - A	CPR	
metric - Desig	n Considerat	ions.						
RF Filter Desi	ign, Oscillat	or and Mixe	r					
Overview-basi	c resonator a	and filter conf	figuration-sp	ecial filter re	alizations-filte	er implement	tation.	[9]
Basic oscillato	r model-high	frequency of	scillator conf	figuration- ba	asic charactei	ristics of mix	ers-phase	
locked loops-F	RF directiona	I couplers hy	brid couplers	s-detector ar	nd demodulat	or circuits.		
PLL and Freq	uency Synt	hesizers						[9]
Linearized Mo			hase detecto	ors - Loop filt	ers and Char	ge pumps -	Integer -N	[0]
frequency syn	-	•		-		3 1 1	3	
							Total hours	s 45
Text book(s):								
					Cambridge Ur	niversity Pre	ss, 2013.	
		electronics', 2	2 nd Edition, F	Pearson Edu	cation, 2013.			
Reference(s):		0	O 1471 1 -	.		0040		
					Design', Sprir			
Matthey					ata McGraw-		Pearson Educa	tion Inc
3. Delhi, 2	006.						eaison Educa	uon mc,
4. Recorde	ed lectures a	nd notes ava	ilable at. http	o://www.ee.ii	tm.ac.in/~ani	/ee6240/		

S.No	Topic					
1	CMOS PHYSICS- TRANSCEIVER SPECIFICATIONS AND ARCHITECTURES					
1.1	Introduction to MOSFET Physics	1				
1.2	Noise - Thermal- shot- flicker- popcorn noise	2				
1.3	Two port Noise theory - Noise Figure - THD - IP2 - IP3 - Sensitivity	2				
1.4	SFDR - Phase noise - Specification distribution over a communication link - Homodyne Receiver - Heterodyne Receiver					
1.5	Image reject - Low IF Receiver Architectures Direct up conversion Transmitter - Two step up conversion Transmitter	2				
2	IMPEDANCE MATCHING AND AMPLIFIERS					
2.1	S -parameters with Smith chart - Passive IC components	1				
2.2	Impedance matching networks - Common Gate - Common Source Amplifiers	2				
2.3	OC Time constants in bandwidth estimation and enhancement - High frequency amplifier design	2				
2.4	Power match and Noise match - Single ended and Differential LNAs	2				
2.5	Terminated with Resistors and Source Degeneration LNAs.	2				
3	FEEDBACK SYSTEMS AND POWER AMPLIFIERS					
3.1	Stability of feedback systems: Gain and phase margin	1				
3.2	Root -locus techniques - Time and Frequency domain considerations - Compensation	2				
3.3	General model – Class A, AB, B C, D, E and F amplifiers	2				
3.4	Power amplifier Linearization Techniques	2				
3.5	Efficiency boosting techniques - ACPR metric - Design Considerations.	2				
4	RF FILTER DESIGN, OSCILLATOR AND MIXER					
4.1	Overview-basic resonator and filter configuration	1				
4.2	Special filter realizations-filter implementation. Basic oscillator model	2				
4.3	high frequency oscillator configuration- basic characteristics of mixers	2				
4.4	phase locked loops-RF directional couplers hybrid couplers	2				
4.5	Detector and demodulator circuits.	2				
5	PLL AND FREQUENCY SYNTHESIZERS					
5.1	Linearized Model - Noise properties	2				
5.2	Phase detectors	2				
5.3	Loop filters and Charge pumps	2				
5.4	Integer -N frequency synthesizers	1				
5.5	Direct Digital Frequency synthesizers.	2				
	Total	45				

1. Mr.R.Satheeshkumar—satheeshkumar@ksrct.ac.in

60 PVL 204	VLSI TESTING		Category	L	Т	Р	Credit
------------	--------------	--	----------	---	---	---	--------

		PC	3	0	0	3	
--	--	----	---	---	---	---	--

- To introduce the VLSI testing.
- To introduce logic and fault simulation and testability measures
- To study the test generation for combinational and sequential circuits
- To study the design for testability.
- To study the fault diagnosis

Prerequisite

Analog and Digital CMOS VLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand VLSI Testing Process	Remember, Understand
CO2	Develop Logic Simulation and Fault Simulation	Remember, Understand
CO3	Develop Test for Combinational and Sequential Circuits	Understand, Apply, Analyse
CO4	Understand the Design for Testability	Remember, Understand Apply
CO5	Perform Fault Diagnosis	Understand Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1			3			3
CO2			3			3
CO3	3		3	3		3
CO4	3		3	3		3
CO5			3	2		3

¹⁻ low, 2- medium, 3- high

Bloom's Category		Assessment Tests Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember (Re)	15	15	30
Understand (Un)	10	10	10
Apply (Ap)	25	25	50
Analyze (An)	10	10	10
Evaluate (Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

	K	.S.Rangas				omous R 20	22		
60 PVL 204- VLSI TESTING M.E-VLSI Design									
	H	ours / Wee		Total	Credit		Maximum N	larks	
Semester	L	T	P	Hours	C	CA	ES	Tot	al
II	3	0	0	45	3	40	60	10	
INTRODUCTI									
Introduction –						SI Testing –	Test Econor	nics and	[9]
Product Qualit					odels.				
LOGIC & FAU									
Simulation for						Simulation –	- Algorithms	for True	[9]
Value and Fau									
Algorithms and						_	orithme Sc	vauontial	[9]
ATPG Algorith			•				Jillillis – Se	quentiai	[9]
DESIGN FOR			tir o och	zuo / ugonum	I Dasca / (TI	<u>. </u>			
Design for Tes			tv Analvsis -	Scan Cell De	esigns – Sca	n Architectur	e – Built In S	Self-Test	[9]
- Random Log					Ü				
FAULT DIAG	NOSIS								
Introduction a							ors for Diag	gnosis –	[9]
Combinational	Logic Diagno	sis - Scan (Chain Diagno	osis — Logic E	BIST Diagnos	sis.			
T (1 1 (.)							Tota	al hours	45
Text book(s):		NI \ \ \ \ \	10/	\A/ (1)	\(\(\O \) \(\tau \) = - t \(\D \).	in a in Landau and	A I- :4 4	." – I	
2017	erng Wang, C	_				•			
	L. Bushnell a				of Electronic	Testing for E	Digital, Memo	ory & Mixe	ed-
Signal v	LSI Circuits"	Kluwer Ac	ademic Publi	shers, 2017					
Reference(s):									
	Jha and Sand							1.	
	a and S. Gup								
	VLSI Test Pri								040
4. ZeljkoZi	lic "Verificatio	n by ⊨rror N	ıloaeling: Usi	ng resting i	ecnniques in	Hardware V	erification", S	springer,2	010

S.No	Topic	No. of Hours
1	INTRODUCTION TO TESTING	
1.1	Introduction	1
1.2	VLSI Testing Process and Test Equipment	2
1.3	Challenges in VLSI Testing	1
1.4	Test Economics and Product Quality	1
1.5	Fault Modeling	2
1.6	Relationship Among Fault Models	2
2	LOGIC & FAULT SIMULATION & TESTABILITY MEASURES	
2.1	Simulation for Design Verification and Test Evaluation	2
2.2	Modeling Circuits for Simulation	2
2.3	Algorithms for True Value and Fault Simulation	2
2.4	SCOAP Controllability and Observability	3
3		
3.1	Algorithms and Representations	1

3.2	Redundancy Identification	1
3.3	Combinational ATPG Algorithms	2
3.4	Sequential ATPG Algorithms	1
3.5	Simulation Based ATPG	2
3.6	Genetic Algorithm Based ATPG	2
4	DESIGN FOR TESTABILITY	
4.1	Design for Testability Basics	1
4.2	Testability Analysis	1
4.3	Scan Cell Designs	1
4.4	Scan Architecture	2
4.5	Built In Self-Test	1
4.6	Random Logic BIST	1
4.7	DFT for Other Test Objectives	2
5	FAULT DIAGNOSIS	
5.1	Introduction and Basic Definitions	1
5.2	Fault Models for Diagnosis	2
5.3	Generation of Vectors for Diagnosis	2
5.4	Combinational Logic Diagnosis	2
5.5	Scan Chain Diagnosis	1
5.6	Logic BIST Diagnosis	1
	Total	45

1. Mrs.C.Saranya-saranyac@ksrct.ac.in

60 PVL 2P1	VLSI LABORATORY II	Category	L	Т	Р	Credit
		PC	0	0	4	2

- To learn the concept of System Verilog HDL
- To help engineers understand, and maintain digital hardware models and conventional verification test benches written in System Verilog.
- To provide a critical language foundation for more advanced training on System Verilog
- To develop Verilog test environments using EDA tools
- To learn the features and capabilities of the UVM class library for system Verilog

Prerequisite

Basic Verilog HDL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Use the System Verilog, to design and synthesis features of digital circuits	Create
CO2	Appreciate and apply the System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.	Create
CO3	Implement higher level of abstraction to design and verification	Create
CO4	Develop Verilog test environments of significant capability and complexity	Create
CO5	Integrate scoreboards, multichannel sequencers and Register Models	Create

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3	3	3	3
CO2	3		3	3	3	3
CO3	3		3	3	3	3
CO4	3		3	3	3	3
CO5	3		3	3	3	3

1- low, 2- medium, 3- high

K.S.Rangasamy College of Technology – Autonomous R2022

60 PVL 2P1 – VLSI Laboratory II									
M.E-VLSI Design									
Samaatar	Hours / Week			Total bus	Credit Ma		aximum	aximum Marks	
Semester	L	Т	Р	Total hrs	С	CA	ES	Total	
II	0	0	4	60	2	60	40	100	

- 1. Introduction to System Verilog and UVM
- 2. Modeling Combinational circuits using System Verilog
- 3. Design FIFO using system Verilog
- 4. Design on FSM using system Verilog
- 5. Use an interface between testbench and DUT
- 6. Developing a test program using system Verilog
- 7. Create a scoreboard using dynamic array
- 8. Use mailboxes for verification
- 9. Generate constrained random test values
- 10. Using coverage with constrained random tests

Total Hours:60

Course Designers

1. Mr.S.Saravanan – saravanan.s@ksrct.ac.in

60 PVL 2P2	TERM PAPER AND SEMINAR	Category	L	Т	Р	Credit
		РС	0	0	2	0

- Students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles.
- A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas.
- To identify the recent topics in the research area and formulate the problem
- To analyze the mathematical model for the identified problem
- To design and simulate/ develop prototype model

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Survey the relevant bibliography such as national/international referred journals for the preferred areas of research	Analyse
CO2	Develop scientific, technical reading and writing skills for the technical report preparation to apply it in their topics of research	Apply
CO3	Apply mathematical ideas to any problem in the research field	Apply
CO4	Implement and analyze the various complex problems in different practical applications	Analyse
CO5	Cultivate presentation skills to deliver their work in front of technically qualified audience	Apply

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3	2	3		
CO2	3	3	3	2	3	3	
CO3	3		3	3		3	
CO4	3	2	3	3	2	3	
CO5	3	3	3	2	3		
1- low, 2- medium, 3- high							

K.S.Rangasamy College of Technology – Autonomous R 2018

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

	60 PVL 2P2- TERM PAPER AND SEMINAR							
			I	M.E-VLSI De	esign			
Semester		Hours / V	Veek	Total	Credit	M	laximum Ma	arks
Semester	L	T	Р	Hours	С	CA	ES	Total
II	0	0	2	30	0	100	00	100
	The v	vork involv	es the follow	ing steps:				
	1	. Selectir	ng a subject,	narrowing th	ne subject inte	o a topic.		
	2	. Stating	an objective	•	-			
	3	. Collecti	ng the releva	ant bibliogra _l	ohy (at least 1	15 journal pa	apers)	
	4	. Prepari	ng a working	outline.				
	5	. Studyin	g the paper	s and unde	rstanding the	authors co	ntributions a	ind critically
		analysiı	ng each pap	er.				
	6	. Prepari	ng a working	outline.				
	7	. Linking	the papers a	and preparin	g a draft of th	e paper.		
	8. Preparing conclusions based on the reading of all the papers.							
	9. Writing the Final Paper and giving final Presentation							
	Pleas	se keep a f	ile where the	work carrie	d out by you	is maintaine	d.	
	Activi	ties to be	carried out					

Activity	Instructions	Submission week	Evaluation
Selection of area of interest and Topic Stating an Objective	An area of interest, topic has to be selected and objective to be framed	2 nd week	3% Based on clarity of thought, current relevance and clarity in writing
Collecting Information about chosen area & topic	The following details related to the chosen area must be collected. 1. List 1 special interest groups or professional 2. society 3. List 2 journals 4. List 3 conferences, symposia or workshops 5. List1+ thesis title 6. List 5 web presences (mailing lists, forums, 7. news sites) 8. List 6 authors who publish regularly in 9. your area 10. Attach a call for papers (CFP) from 11. Conference/Journal/Symposium in the chosen area.	3 rd week	3% (the selected information must be area specific and of international and national standard)
Collection of Journal papers in the topic in the context of the objective — collect 20 & then filter	 Provide a complete list of references you will be using-Based on the objective - Search various digital libraries and Google Scholar When picking papers to read - try to: Pick papers that are related to each other in some way and/or that are in the same field so that a meaningful survey can be Written 	4 th week	6% (the list of standard papers and reason for selection)

	Favour papers from well-known		
	journals and conferences, Favour 'first' or 'foundational' papers in the field (as indicated in other people's survey paper), Favour more recent papers, Pick a recent survey of the field to quickly gain an overview, Find relationships with respect to each other and to your topic area		
	 (classification scheme/categorization) Mark in the hard copy of papers whether complete work or section/sections of the paper are being considered 		
Reading and	Reading Paper Process	5 th week	8%
notes for first 5 papers	 For each paper form a Table answering the following questions: What is the main topic of the article? What was/were the main issue(s) the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey) 	J Week	(the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Reading and notes for next5 papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your
Draft outline 1 and Linking papers	Prepare a draft Outline, with survey goals, along with a classification / categorization Diagram	8 th week	8% (this component will be evaluated based on the linking and classification among the papers)
Abstract	Prepare a draft abstract and give a Presentation	9 th week	6% (Clarity, purpose and conclusion) 6% Presentation & Viva Voce

Introduction Background	Write an introduction and background Sections	10 th week	5% (clarity)
Sections of the paper	Write the sections of the paper chosen based on the classification / categorization diagram in keeping with the goals of your survey	11 th week	10% (this component will be evaluated based on the linking and classification among the papers)
Your conclusions	Write conclusions and future work	12 th week	5% (conclusions– clarity and your ideas)
Final Draft	Complete the final draft of the paper prepared	13 th week	10% (formatting, English, Clarity and linking) 4% Plagiarism Check Report
Seminar	A brief 15 slides on the paper prepared	14 th & 15 th week	10% (based on presentation and Viva-voce)

60 PVL E11	NANO ELECTRONICS	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To learn basic concepts of Nano electronics.
- To know the techniques of fabrication and measurement.
- To study the properties of nanoelectronic materials
- To gain knowledge about Nanostructure devices.
- To know logic devices and applications

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the fundamentals of nanoelectronics	Remember, Understand
CO2	Describe the fabrication and measurement techniques of various nanostructures and nanotubes	Apply
CO3	Explain the properties of nanoelectronic materials	Apply
CO4	Know the various nanostructure devices	Remember, Understand
CO5	Describe the types of logic device and their applications	Apply

Mapping with Programme Outcomes

PO1	PO2	PO3	PO4	PO5	PO6			
3	3	3	2	2	1			
3	3	3	2	2	1			
3	3	3	2	2	1			
3	3	3	2	2	1			
3	3	3	2	2	1			
	_							

1- low, 2- medium, 3- high

Bloom's Category	Continuous Assess	End Sem Examination	
Bloom's Category	1 2		(Marks)
Remember(Re)	30	30	30
Understand(Un)	10	10	30
Apply (Ap)	20	20	40
Analyze (An)	0	0	0
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

K.S.Rangasamy College of Technology – Autonomous R 2022									
				0 PVL E11-	NANO ELE	CTRONICS			
					E-VLSI Desi				
Seme	ester	_	Hours / Weel		Total	Credit		aximum Marks	
-	ı	L 3	T	P 0	Hours 45	C	CA 40	ES 60	Total 100
Microe mecha Materia bands-	lectronionics- So lectronics Solid lectronics selectronics lectronics selectronics lectronics selectronics lectronics sele	chrodinger anoelectro conductor	biomolecule wave equation nics- Semico	on- Wave r nductors- C res- Lattic	nechanics o rystal lattice e-matched	f particles: A s: Bonding ir and pseudo	atoms and a n crystals- E morphic he	duality- Wave atomic orbitals- lectron energy aterostructures-	[9]
Fabrication and Measurement Techniques Growth- fabrication- and measurement techniques for nanostructures- Bulk crystal and heterostructure growth- Nanolithography- etching- and other means for fabrication of nanostructures and nanodevices- Techniques for characterization of nanostructures- Spontaneous formation and ordering of nanostructures- Clusters and nanocrystals- Methods of nanotube growth- Chemical and biological methods for nanoscale fabrication- Fabrication of nano-electromechanical systems.							[9]		
Properties Dielectrics-Ferroelectrics-Electronic Properties and Quantum Effects-Magneto electronics — Magnetism and Magneto transport in Layered Structures-Organic Molecules — Electronic Structures- Properties- and Reactions-Neurons — The Molecular Basis of their Electrical Excitability-Circuit and System Design-Analysis by Diffraction and Fluorescence Methods-Scanning Probe Techniques.							[9]		
Nano Structure Devices Electron transport in semiconductors and nanostructures- Time and length scales of the electrons in solids- Statistics of the electrons in solids and nanostructures- Density of states of electrons in nanostructures- Electron transport in nanostructures- Electrons in traditional low-dimensional structures- Electrons in quantum wells- Electrons in quantum wires- Electrons in quantum dots- Nanostructure devices- Resonant-tunneling diodes- Field-effect transistors- Single-electron-transfer devices- Potential-effect transistors- Light-emitting diodes and lasers- Nano-electromechanical system devices- Quantum-dot cellular automata.						[9]			
Logic Devices and Applications Logic Devices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantum Transport Devices Based on Resonant Tunneling-Single-Electron Devices for Logic Applications-Superconductor Digital Electronics-Quantum Computing Using Superconductors-Carbon Nanotubes for Data Processing- Molecular Electronics.							[9]		
								Total h	ours: 45
	'ladimir \							noelectronics: S	science,
 Nanotechnology, Engineering, and Applications', Cambridge University Press, 2013. SupriyoDatta, 'Lessons from Nanoelectronics: A New Perspective on Transport', World Scientific, 2012. 									
3. George W. Hanson, 'Fundamentals of Nanoelectronics', Pearson Education, 2012.									
4. Korkin, Anatoli; Rosei, Federico (Eds.), 'Nanoelectronics and Photonics', Springer, 2013.									
5. Mircea Dragoman, Daniela Dragoman, 'Nanoelectronics: Principles and Devices', CRC Press, 2012							2.		
6 K	arl Gose	er, Peter Gl		n Dienstuhl,	'Nanoelectr	<u>-</u>		From Transisto	
			ectronics and			, John Wiley	& Sons, 20	12.	

S. No	Торіс	No. of Hours
1	INTRODUCTION TO NANOELECTRONICS	
1.1	Microelectronics towards biomolecule electronics	1
1.2	Particles and waves- Wave particle duality	1
1.3	Wave mechanics- Schrodinger wave equation	1
1.4	Wave mechanics of particles: Atoms and atomic orbitals	1
1.5	Materials for nanoelectronics- Semiconductors	1
1.6	Crystal lattices: Bonding in crystals- Electron energy bands	1
1.7	Semiconductor heterostructures- Lattice-matched and pseudomorphichetero structures	1
1.8	Inorganic-organic heterostructures	1
1.9	Carbon nanomaterials: nanotubes and fullerenes	1
2	FABRICATION AND MEASUREMENT TECHNIQUES	
2.1	Growth- fabrication- and measurement techniques for nanostructures	1
2.2	Bulk crystal and heterostructure growth	1
2.3	Nanolithography- etching- and other means for fabrication of nanostructures and nanodevices	1
2.4	Techniques for characterization of nanostructures	1
2.5	Spontaneous formation and ordering of nanostructures	1
2.6	Clusters and nanocrystals	1
2.7	Methods of nanotube growth	1
2.8	Chemical and biological methods for nanoscale fabrication	1
2.9	Fabrication of nano-electromechanical systems	1
3	PROPERTIES	
3.1	Dielectrics-Ferroelectrics, Electronic Properties and Quantum Effects	1
3.2	Magneto electronics – Magnetism and Magneto transport in Layered Structures	1
3.3	Organic Molecules	1
3.4	Electronic Structures	1
3.5	Properties- and Reactions-Neurons	1
3.6	The Molecular Basis of their Electrical Excitability	1
3.7	Circuit and System Design	1
3.8	Analysis by Diffraction and Fluorescence Methods	1
3.9	Scanning Probe Techniques	1
4	NANO STRUCTURE DEVICES	
4.1	Electron transport in semiconductors and nanostructures, Time and length scales of the electrons in solids	1
4.2	Statistics of the electrons in solids and nanostructures, Density of states of electrons in nanostructures	1
4.3	Electron transport in nanostructures	1
4.4	Electrons in traditional low-dimensional structures	1
4.5	Electrons in quantum wells, Electrons in quantum wires and Electrons in quantum dots	1
4.6	Nanostructure devices- Resonant-tunneling diodes	1

4.7	Field-effect transistors, Single-electron transfer devices	1
4.8	Potential-effect transistors, Light-emitting diodes and lasers	1
4.9	Nano-electromechanical system devices- Quantum-dot cellular automata.	1
5	LOGIC DEVICES AND APPLICATIONS	
5.1	Logic Devices-Silicon MOSFETs	2
5.2	Ferroelectric Field Effect Transistors	1
5.3	Quantum Transport Devices Based on Resonant Tunneling	1
5.4	Single-Electron Devices for Logic Applications	1
5.5	Superconductor Digital Electronics	1
5.6	Quantum Computing Using Superconductors	1
5.7	Carbon Nanotubes for Data Processing	1
5.8	Molecular Electronics	1
	Total	45

1. Saravanan S

- saravanan.s@ksrct.ac.in

60 PVL E12	LINEAR ALGEBRA	Category	L	Т	Р	Credit
	PE	3	0	0	3	

- To understand the fundamental concepts of various vector spaces.
- To get the knowledge in linear transformations.
- To develop and analyze the canonical forms and Jordan canonical forms.
- To learn and implement procedure for inner product spaces.
- To solve the problems of linear algebra applications.

Prerequisite

Basic Linear Algebra

Course Outcomes

On the successful completion of the course, students will be able to

	·	
CO1	Describe the concepts of linear equations and vector spaces.	Remember,
		Understand, Apply
CO2	Apply principles of matrix algebra to linear transformations.	Remember,
		Understand, Apply
CO3	Compute the various canonical forms and structures to solve the problems	Remember,
		Understand, Apply
CO4	Evaluate the inner product spaces and QR-factorization problems.	Remember, Apply,
		Evaluate
CO5	Acquire knowledge in the linear algebra applications.	Remember,
		Understand, Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	
CO2	3	3	3	3	2	
CO3	3	3	3	2	2	
CO4	3	3	3	2	2	
CO5	3	3	2	2	2	

1- low, 2- medium, 3- high

Bloom's Category	Continuous A	End Sem Examination			
Bloom 3 Category	1 2		(Marks)		
Remember (Re)	10	10	10		
Understand (Un)	10	10	30		
Apply (Ap)	40	30	50		
Analyze (An)	0	0	0		
Evaluate (Ev)	0	10	10		
Create (Cr)	0	0	0		
Total	60	60	100		

K.S.Rangasamy College of Technology – Autonomous R 2022									
			60 F		LINEAR ALG	EBRA			
		Цели	/ Week	IVI.E-	/LSI Design Total	Credit	NA.	aximum Ma	wko.
Ser	nester	I	T	Р	Hours	Credit	CA	ES ES	Total
	II	3	0	0	45	3	40	60	100
Lin		uations and Vecto		0	70		70	00	
Linear equations: Fields- system of linear equations- and its solution sets - elementary row operations and echelon forms- matrix operations- invertible matrices- LU-factorization Vector Spaces: Vector spaces- subspaces- bases and dimension- coordinates- summary of row-equivalence-computations concerning subspaces.								· [9]	
								I	
Canonical Forms Canonical Forms: Characteristic values- annihilating polynomials- invariant subspaces- direct- sum decompositions- invariant direct sums- primary decomposition theorem- cyclic bases- Jordan canonical form. Iterative estimates of characteristic values.									
Inne	er Prod	luct Spaces uct Spaces: Inner nidt process- QR-fa						projections	[9]
Syn opti	nmetric mizatio	Matrices and Ap Matrices and C n - singular value - Digital Communic	Quadratic decompo	Forms:	Digitalization-				
1								Total Hours	45
Tex	tbook(s):							
1.	Gilber	t Strang , 'Linear A	lgebra and	l its Appli	cations', 4 th Ed	ition, Thoms	son, Broo	ks/Cole, 20	13.
2.		C. Lay, ,Steven cation2016.	R. LayJud	dith McDo	onald , 'Linear	Algebra aı	nd its Ap	plications',	Pearson
Reference(s):									
1.	1. Bernard Kolman and David R. Hill, 'Introductory Linear Algebra: An Applied First Course', 9th Edition CRC press, 2014.							9 th Edition	
2.	2. T. Banchoff and J. Wermer, 'Linear Algebra through Geometry', Springer, 2012.								
3.	S. Kum	ıaresan, 'Linear Alç	gebra: A ge	ometric a	ipproach', Prei	ntice Hall of	India Priv	vate Ltd., 20	13.
4.	Ganesl	n A, 'Linear Algebra	a and Its A	pplication	s',CBS Publish	ners & Distri	butors,20)19	

S.No.	Topic	No.of Hours
1	Linear Equations and Vector Spaces	
1.1	Linear Equations: Fields	1
1.2	System of Linear Equations and its solutions	2
1.3	Elementary row operations and Echelon forms	1
1.4	Matrix operations, Invertible matrices	1
1.5	LU- factorization vector spaces, Vector spaces, subspaces	2
1.6	Bases and dimension coordinates, Summary of row equivalence	1
1.7	Computations Concerning subspaces	1

2	Linear Transformations	
2.1	Linear transformations	2
2.2	Algebra of linear transformations	1
2.3	Isomorphism	1
2.4	Representation of transformations by matrices	1
2.5	Linear functionals	2
2.6	Transpose of a linear transformation	2
3	Canonical Forms	
3.1	Characteristic values	1
3.2	Annihilating polynomials	1
3.3	Invariant subspaces, Direct sum decompositions	2
3.4	Invariant direct sums	1
3.5	Primary decomposition theorem, Cyclic bases	2
3.6	Jordan canonical form	1
3.7	Iterative estimates of characteristic values	1
4	Inner Product Spaces	
4.1	Inner products	1
4.2	Inner product spaces	1
4.3	Orthogonal sets and projections	2
4.4	Gram- schmidt process	1
4.5	QR factorization	2
4.6	Least squares problems	1
4.7	Unitary operators	1
5	Symmetric Matrices and Applications of Linear Algebra	
5.1	Digitalization	1
5.2	Quadratic forms	2
5.3	Constrained optimization	1
5.4	Singular value decomposition	2
5.5	Applications of Linear algebra in DSP	1
5.6	Image processing,	1
5.7	Digital communication	1
	Total	45

Mrs. D.Padmavathi - padmavathi@ksrct.ac.in

60 PVL E13 DIGITAL IMAGE PROCESSING

Category L T P Credit

		PE	3	0	0	3	
--	--	----	---	---	---	---	--

- To learn the image fundamentals and mathematical transform
- To analyse Image enhancement and restoration of image
- To analyse Image Segmentation And Recognition
- To Learn about color image processing and image compression
- To learn the image processing algorithms for image enhancement, restoration, and segmentation.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe digital image fundamentals and different transforms.	Remember, Understand
CO2	Discuss the basics of Image enhancement and restoration techniques of images.	Apply
CO3	Explain the techniques of image segmentation and recognition.	Remember, Understand Apply, Analyse
CO4	Discuss about color image processing and image compression.	Apply, Analyse
CO5	Implement the image processing algorithms for image enhancement, restoration, and segmentation.	Apply, Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	3
CO2	3	3	3	2	3	3
CO3	3	3	3	2	3	3
CO4	3	3	3	2	3	3
CO5	3	3	3	2	3	3

1- low, 2- medium, 3- high

Bloom's Category	Continuo	ıs Assessment Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember(Re)	10	10	30
Understand(Un)	20	20	30
Apply (Ap)	30	30	30
Analyze (An)	0	0	10
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

		6		DIGITAL IMAG M.E-VLSI Des		ING		
		Hours / We		Total	Credit		Maximum N	larks
Semester	L	Т	Р	Hours	С	CA	ES	Total
II	3	0	0	45	3	40	60	100
Elements o Basic geom Transform -	netric transfoi	eption – Ima mations-Intr rable Image	nge sampling oduction to I Transforms -	and quantiza Fourier Transfo Walsh – Hadar	orm and DFT	- Properti	es of 2D Four	ier [9]
Basic gray smoothing s mean filters	spatial filters - s – order – st	ormations – - sharpening atistics filter	Histogram of spatial filters s- Adaptive f	equalization — s- model of the filters — Inverse ometric mean f	image degrad e filtering – m	ation / Res inimum m	toration proces ean square er	ss- [9]
	mentation ar				ti D	: ll		
morphological classes. Re	cal operators: cognition bas	Dilation – ei sed on decisi	rosion - open ion — theoreti					
morphologic classes. Relation Image Con Need for dastandard, MI Processing F	cal operators: cognition bas npression& (ta compressi PEG. Color F	Dilation – er sed on decisi Color Image on, Huffman undamental	rosion - open ion – theoreti Processing , Run Length s – Color Mo	ing and closing ic methods.	g - Image recontant ctor Quantization Full-Color	gnition pat ion, Transf Image- Ps	orm coding, JF	ern [9] PEG age [9]
morphologic classes. Relation Red for dastandard, MI Processing Fon Color Simulation Implementa	cal operators: cognition bas pression& (ta compressi PEG. Color F Processing-Co	Dilation – eased on decision of the color Image on, Huffman fundamental olor Transfor e processing	rosion - open ion – theoreti Processing , Run Length s – Color Mo rmations – S	ing and closing ic methods. Encoding, Vecodels –Basics	g - Image reco etor Quantizati of Full-Color Sharpening –	gnition pat ion, Transf Image- Ps Image Se	terns and patte orm coding, JF eudo color Im gmentation Ba	ern [9] PEG age [9] sed
morphologic classes. References For Color Simulation Coding tech	cal operators: cognition bas pression& (ta compressi PEG. Color F Processing-Co ation of Imag nniques- Appl	Dilation – eased on decision of the color Image on, Huffman fundamental olor Transfor e processing	rosion - open ion – theoreti Processing , Run Length s – Color Mo rmations – S	ing and closing ic methods. Encoding, Vecodels –Basics moothing and s	g - Image reco etor Quantizati of Full-Color Sharpening –	gnition pat ion, Transf Image- Ps Image Se	orm coding, JF eudo color Im gmentation Ba	ern [9] PEG age [9] sed
morphologic classes. Reference in Red for dastandard, MI Processing Fon Color Simulation Implementa Coding tech	cal operators: cognition bas pression& (ta compressionEG. Color F Processing-Co ation of Imag nniques- Appl	Dilation – eased on decisions. Color Image on, Huffman fundamental olor Transformer of the processing ications.	rosion - open ion – theoreti Processing , Run Length s – Color Mo rmations – Si	ing and closing ic methods. Encoding, Vecodels –Basics moothing and s	g - Image reconstructor Quantization Full-Color Sharpening —	gnition pat ion, Transfi Image- Ps Image Seg	orm coding, JF eudo color Im gmentation Ba - Segmentatio	ern [9] PEG age [9] sed on- [9]
morphologic classes. References For Color Simulation Coding tech	cal operators: cognition bas pression& (ta compressionEG. Color F Processing-Co ation of Imag nniques- Appl	Dilation – eased on decisions. Color Image on, Huffman fundamental olor Transformer of the processing ications.	rosion - open ion – theoreti Processing , Run Length s – Color Mo rmations – Si	ing and closing ic methods. Encoding, Vecodels –Basics moothing and s	g - Image reconstructor Quantization Full-Color Sharpening —	gnition pat ion, Transfi Image- Ps Image Seg	orm coding, JF eudo color Im gmentation Ba - Segmentatio	ern [9] PEG age [9] sed on- [9]
morphologic classes. Reference in Meed for dastandard, MI Processing Fon Color Simulation Implementa Coding tech	cal operators: cognition bas npression& (ta compressionEG. Color Forcessing-Contion of Imag nniques- Appl Rafael Content 2018.	Dilation – election – election decision, Huffman fundamental color Transforme processing ications.	rosion - open ion – theoreti Processing Run Length s – Color Mormations – Si g algorithms	ing and closing ic methods. Encoding, Vecodels –Basics moothing and s	ctor Quantizatiof Full-Color Sharpening – ancement - F	gnition pat	orm coding, JF eudo color Imgmentation Ba - Segmentatio To on Education,	ern [9] eEG age [9] sed on- [9] tal hours: 4
morphological classes. Refinage Con Need for dastandard, MF Processing Fon Color Simulation Implemental Coding tech	cal operators: cognition bas pression& (ta compressionEG. Color F Processing-Co ation of Imag aniques- Appl Rafael C (2018. A.K. Jain, s):	Dilation – ensed on decision of the color Image on, Huffman fundamental color Transforme processing ications. Gonzalez, R	rosion - open ion – theoreti Processing , Run Length s – Color Mormations – Si g algorithms ichard E. Wo	ing and closing ic methods. Encoding, Vecodels –Basics moothing and services and services are limage Enhanced.	ctor Quantization Full-Color Sharpening – ancement - F	gnition pat	orm coding, JF eudo color Im gmentation Ba - Segmentatio To on Education, ice Hall of Indi	ern [9] EG [9] sed [9] tal hours: 4 4th Edition, a, 2016.
morphological classes. Reference for dastandard, MI Processing Fon Color Simulation Implementa Coding tech Text book(1. 2.	cal operators: cognition bas pression& (ta compressionEG. Color F Processing-Co ation of Imag aniques- Appl Rafael C (2018. A.K. Jain, s):	Dilation – ensed on decision of the color Image on, Huffman fundamental color Transforme processing ications. Gonzalez, R	rosion - open ion – theoreti Processing , Run Length s – Color Mormations – Si g algorithms ichard E. Wo	ing and closing ic methods. Encoding, Vectodels –Basics moothing and series in the code, 'Digital Imports, 'Digital Imp	ctor Quantization Full-Color Sharpening – ancement - F	gnition pat	orm coding, JF eudo color Im gmentation Ba - Segmentatio To on Education, ice Hall of Indi	ern [9] EG [9] sed [9] tal hours: 4 4th Edition, a, 2016.
morphologic classes. Reference(cal operators: cognition base pression& (ta compressionEG. Color Forocessing-Contion of Imageniques- Appl s):	Dilation – eised on decision on decision, Huffman undamentals olor Transforme processing ications. Gonzalez, R Fundamentals, JoernOstel	rosion - open ion – theoreti Processing Run Length S – Color Mormations – Si g algorithms ichard E. Wo	ing and closing ic methods. Encoding, Vecodels –Basics moothing and services and services are limage Enhanced.	ctor Quantization Full-Color Sharpening – ancement - Funage Processions, New Edi	gnition pat	orm coding, JF eudo color Im gmentation Ba - Segmentatio To on Education, ice Hall of Indi	ern [9] EG [9] sed [9] tal hours: 4 4th Edition, a, 2016.
morphologic classes. Reference(cal operators: cognition bas apression& (ta compressionEG. Color F Processing-Co ation of Imag aniques- Appl S): Rafael C 2018. A.K. Jain, (s): Yao Wang Hall, 2016. William K. Rafael C.	Dilation – ensed on decision of the sed on the sed o	rosion - openion – theoretion – theoretion – theoretion – Processing, Run Length s – Color Mormations – Signations – Signations – Signations – Signations – Signation – Signat	ing and closing ic methods. Encoding, Vectodels –Basics moothing and services and services for the services of the services o	ctor Quantization Full-Color Sharpening — ancement - Full-Color Sharpening — ancement	gnition pat	orm coding, JF eudo color Imgmentation Ban-Segmentation To on Education, ice Hall of Indi	ern [9] EG [9] sed [9] tal hours: 4 4th Edition, a, 2016.

S.No	Торіс	No.of Hours
1	Digital Image Fundamentals and Transforms	
1.1	Elements of visual perception	1
1.2	Image sampling and quantization Basic relationship between pixels	1
1.3	Basic geometric transformations	1
1.4	Introduction to Fourier Transform and DFT	1
1.5	Properties of 2D Fourier Transform	1
1.6	FFT	1
1.7	Separable Image Transforms, Walsh, Hadamard	1
1.8	Discrete Cosine Transform	1
1.9	Haar – Slant, Karhunen Loeve transforms.	1
2	Image Enhancement and Restoration	1
2.1	Basic gray level transformations	1
2.2	Histogram equalization , Histogram matching	1
2.3	spatial filtering ,smoothing spatial filters	1
2.4	sharpening spatial filters- model of the image degradation / Restoration process	1
2.5	mean filters – order – statistics filters- Adaptive filters	1
2.6	Inverse filtering – minimum mean square error filtering	1
2.7	constrained least squares filtering	1
2.8	Geometric mean filter	1
2.9	geometric transformations	1
3	Image Segmentation and Recognition	1
3.1	Detection of Discontinuities	1
3.2	Edge linking and boundary detection	1
3.3	Region based segmentation	1
3.4	morphological operators: Dilation – erosion	2
3.5	opening and closing	1
3.6	Image recognition patterns and pattern classes	1
3.7	Recognition based on decision	1
3.8	theoretic methods	1
4	Image Compression& Color Image Processing	1
4.1	Need for data compression, Huffman	1
4.2	Run Length Encoding, Vector Quantization	1
4.3	Transform coding, JPEG standard, MPEG	1
4.4	Color Fundamentals – Color Models	1
4.5	Basics of Full-Color Image	1
4.6	Processing-Color Transformations	2
4.7	Smoothing and Sharpening	1
4.8	Image Segmentation Based on Color	1
5	Simulation	1
5.1	Implementation of Image processing algorithms	2

	Total	45
5.6	Applications	1
5.5	Coding techniques	2
5.4	Segmentation	2
5.3	Restoration	2
5.2	Image Enhancement	2

1. Dr.S.MALARKHODI - malarkhodi@ksrct.ac.in

60 PVL E14	IP BASED VLSI DESIGN	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To learn about IC manufacturing and fabrication.
- To analyse the combinational, sequential and subsystem design.
- To analyse the subsystem design.
- To learn about different floor planning techniques and architecture design.
- To introduce IP design security

Prerequisite

Digital CMOS VLSI Design
Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the IC manufacturing with various fabrication process and Layout design techniques	Remember, Understand
CO2	Analyze the combinational logic networks and its functions	Apply
CO3	Design the sequential circuits and analyse the subsystem design performance	Understand, Apply
CO4	Describe the various floor planning techniques and architecture in VLSI.	Remember, Understand
CO5	Explain an IP based Protection of data and Privacy security.	Remember, Understand

Mapping with Programme Outcomes

69						
COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3			3
CO2	3		3	3		3
CO3	3		3	3		3
CO4	3	3	3	3		3
CO5	3	3	3		3	3
1- low, 2- m	edium, 3- high	•	•	•	•	•

Bloom's Category	Continuous A (N	End Sem Examination	
	1	2	(Marks)
Remember (Re)	10	10	10
Understand (Un)	25	25	40
Apply (Ap)	25	15	40
Analyse (An)	0	10	10
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

		K.S.Ranga	samy Colle	ge of Techn	ology – Auto	onomous R	2022		
			60 PVL E	14- IP BASE	D VLSI DES	IGN			
				M.E-VLSI D	esign				
Semest	ar l	Hours / Wee		Total	Credit		Maximum	Marks	
Semesi	L	T	Р	Hours	С	CA	ES	Tota	
II 3 0 0 45 3 40 60 100									
Introduction	Its Fabrication n -IC manufacti ransistors - Wire							Fabrication	[9]
Logic Gate - Low pow	ional Logic Net es: Combinationa er gates – Delay onal network de	ıl Logic Func y – Yield - G	ates as IP -	Combination	nal Logic Net	works-Stan	dard Cell bas	sed Layout-	[9]
Subsyste Sequentia optimizatio Density m	m Design I Machine -Lato on - Design valida emory - Image S	ation and tes ensors – FP	sting - Subsy GA – PLA -	/stem Desigr	n-Combinatio	nal Shifter-	Arithmetic Cii		[9]
Floor plar Architectu	nning and Archi ning -Floor plar re Design - HDL ALS systems - A Design	nning metho - Register -1	ds - Global Fransfer Des	sign - Pipelin	ing - High Le	vel Synthes	is - Architect	ure for Low	[9]
Design S o IP in reuse				orotection - F	Protection of o	data and Pri	vacy constra	ined based	[9]
	<u> </u>	•					Т	otal hours	45
Text book	(s):								
	ne wolf, 'Moderr								
2. Qu 201	gang, MiodragP 3.	otkonjak, 'In	tellectual Pr	operty Prote	ection in VLS	I Designs:	Theory and I	Practice', Sp	ringer
Reference	e(s):								
	lyn Wolf, 'Moder								
	rup Bhunia, Sai oug', Springer,20		smita Sur-K	olay, 'Fundai	mentals of IP	and SoC S	ecurity: Desi	gn,Verificatio	n and
	hat Mishra, ,Sw						ust', Springer	, 2017.	
4. Cha	rlotte Stedman, '	Modern VLS	I Design', L	arsen & Kelle	er Education,	2019			

S.No	Topic	No. of Hours
1	VLSI and Its Fabrication	
1.1	Introduction -IC manufacturing	1
1.2	CMOS technology	1
1.3	IC design techniques	1
1.4	IP based design	1
1.5	Fabrication process	1
1.6	Transistors	1
1.7	Wires and Vias	1
1.8	Fabrication Theory reliability	1

1.9	Layout Design and tools	1
2	Combinational Logic Networks	
2.1	Logic Gates: Combinational Logic Functions	1
2.2	Static Complementary Gates	1
2.3	Switch Logic - Alternate Gate circuits	1
2.4	Low power gates	1
2.5	Delay, Yield, Gates as IP	1
2.6	Combinational Logic Networks	1
2.7	Standard Cell based Layout	1
2.8	Combinational network delay, Logic and Interconnect design	1
2.9	Power optimization, Switch logic network, logic testing.	1
3	Subsystem Design	
3.1	Sequential Machine -Latch and Flip flop	1
3.2	System design and Clocking	1
3.3	Performance analysis	1
3.4	power optimization, Design validation and testing	1
3.5	Subsystem Design, Combinational Shifter	1
3.6	Arithmetic Circuits	1
3.7	High Density memory, Image Sensors	1
3.8	FPGA, PLA	1
3.9	Buses and NoC, Data paths, Subsystems as IP	1
4	Floor Planning and Architecture Design	
4.1	Floor planning, Floor planning methods	1
4.2	Global Interconnect, Floor plan design	1
4.3	Off -chip Connections Architecture Design	1
4.4	HDL, Register, Transfer Design	1
4.5	Pipelining, High Level Synthesis	1
4.6	Architecture for Low power, GALS systems	1
4.7	Architecture Testing, IP Components	1
4.8	Design Methodologies,	1
4.9	Multiprocessor System, on-chip Design	1
5	Design Security	
5.1	IP in reuse-based design	2
5.2	Constrained based IP protection	2
5.3	Protection of data and Privacy.	2
5.4	constrained based watermarking for VLSI IP based protection	3
	Total	45

1. Mrs.K.Vanitha – vanitha@ksrct.ac.in

60 PVL E15	GENETIC ALGORITHM FOR VLSI DESIGN	Catego
		PE

Category	L	T	Р	Credit
PE	3	0	0	3

- To introduce overview of Genetic algorithms.
- To design and analyse GA for VLSI design
- To study the advanced GAs.
- To introduce the GA for VLSI testing
- To study the applications of GA in VLSI

Prerequisite

Digital CMOS VLSI Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the fundamentals genetic algorithms	Remember,
		Understand
CO2	Design and analyze the Genetic Algorithms for VLSI design	Analyze
CO3	Design and analyze the Advanced Genetic Algorithms for VLSI design	Analyze
CO4	Design and analyze the Genetic Algorithm for VLSI testing	Analyze
CO5	Analyse the applications of GA in VLSI deign	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3			3
CO2	3		3	3		3
CO3	3		3	3		3
CO4	3	3	3	3		3
CO5	3	3	3		3	3
1- low, 2- medium, 3- high						

Bloom's Category	Continuous A (N	End Sem Examination	
	1	2	(Marks)
Remember(Re)	0	0	0
Understand(Un)	10	10	20
Apply (Ap)	25	25	30
Analyze (An)	25	25	50
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

K.S.Rangasamy College of Technology – Autonomous R 2022										
		60 PVL E	15 - GENE		RITHM FOR Y	VLSI DESIG	SN			
				M.E-VLSI D						
Semest	ar l	Hours / Week		Total	Credit		Maximum			
	L	Т	Р	Hours	С	CA	ES	Tota		
<u> </u>	3	0	0	45	3	40	60	100		
	<i>N</i> OF GENETIC									
Introduction to GA Technology - Simple GA algorithm -Steady State Algorithm - Selection - Crossover - Mutation						[9]				
	caling – Inversion									
	ALGORITHM F									
	.SI Design, Lay							c Routing -	[9]	
	y mapping for F		atic test ge	eneration - G	enetic Multiw	ay Partition	iing			
	ED GENETIC AL						O		ro1	
	netic - Genetic e		al improve	ment - WDFI	R - Comparis	on of CAs -	Standard cell	l placement	[9]	
	gorithm - Unified		TINIO							
	ALGORITHM F			Ci	:4	T		- C A france	[0]	
	II Global routing		lology map	oping - Circu	it segmentati	ion - Test g	eneration in a	a GA frame	[9]	
APPLICA	t generation pro	cedures.								
	imation - Applic	ation of GA	Standard	coll placeme	ont GA for	ATC Brok	lom Encodin	a Eitnocc	[9]	
	GA vs Conventic			ceii piaceine	ent - GA IOI	AIG - PIOL	deni Encodin	y - Filliess	[၅]	
Turiction -	3A V3 CONVENIE	mai Aigontiim.					Т	otal hours	45	
Text book	(e)·						•	Otal Hours	43	
Pins	ki Mazumder, E	MRudnick "C	Senetic Alc	norithm for V	I SI Design	l avout and	test Automat	tion" Prentic	e Hall	
1. 199		ivii tuuriicit, t	JOHOGO AIG	jorianii ioi v	Lor Design,	Layout and	tost Automat	don , i rende	C Hall,	
2. Pinaki Mazumder, E.MRudnick, "Genetic Algorithm for VLSI Design, Layout and test Automation", Prentice Hall,										
1999										
Reference(s):										
Ricardo Sal Zebulum, Macro Aurelio Pacheco, Marley Maria B.R. Vellasco, Marley Maria Bernard Vel										
	"Evolution Electronics: Automatic Design of electronic Circuits and Systems Genetic Algorithms", CRC press, 2001.									
loh	n R.Koza, Forres						ammina: Auto	matic Disco	very of	
≺ I	sable Programs	,		o, morgan i			zg. , tate		,	

S.No	Topic	No. of Hours
1	OVERVIEW OF GENETIC ALGORITHMS	
1.1	Introduction to GA Technology	2
1.2	Simple GA algorithm	1
1.3	Steady State Algorithm	1
1.4	Selection	1
1.5	Crossover	1
1.6	Mutation	1
1.7	Fitness Scaling	1
1.8	Inversion	1
2	GENETIC ALGORITHM FOR VLSI DESIGN	
2.1	GA for VLSI Design	1
2.2	Layout and Test automation	2
2.3	Partitioning - Automatic Placement	2

2.4	Automatic Routing	1
2.5	Technology mapping for FPGAs	1
2.6	Automatic test generation	1
2.7	Genetic Multiway Partitioning	1
3	ADVANCED GENETIC ALGORITHMS	
3.1	Hybrid genetic	1
3.2	Genetic encoding	1
3.3	Local improvement	1
3.4	WDFR	1
3.5	Comparison of CAs	1
3.6	Standard cell placement	1
3.7	GASP algorithm	2
3.8	Unified algorithm	1
4	GENETIC ALGORITHM FOR VLSI TESTING	
4.1	Macro Cell Global routing	1
4.2	FPGA technology mapping	2
4.3	Circuit segmentation	2
4.4	Test generation in a GA frame work	2
4.5	Test generation procedures	2
5	APPLICATIONS	
5.1	Power estimation	1
5.2	Application of GA	1
5.3	Standard cell placement	1
5.4	GA for ATG	2
5.5	Problem Encoding	1
5.6	Fitness function	1
5.7	GA vs Conventional Algorithm	2
	Total	45

1. Mr D Mugilan – mugilan@ksrct.ac.in

60 PVL E16	BIO SIGNAL PROCESSING	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To Know the basic concept of signals and systems and their spectrums
- Analyze the Spectral estimation
- Apply the concept of adaptive filtering and their wavelets in biosignals
- Explain biosignal classification
- Carry out multivariate component analysis

Prerequisite

Digital Signal Processing

Course Outcomes

On the successful completion of the course, students will be able to

	•	
CO1	know the characteristics basic signals, system and spectrums	Remember, Understand
CO2	Analyze the Bio signals in time domain and spectral estimation	Apply, Analyze
CO3	Analyze the Adaptive filtering and wavelet detection in ECG	Apply, Analyze
CO4	Explain bio signal classification	Remember, Understand
CO5	analyze the multivariate components in time frequency domains	Remember, Understand, Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3		
CO2	3	3	3	3		
CO3	3	3	3	3	3	
CO4	3	3	3	3	3	
CO5	3	3	3	3		

Bloom's Category		Assessment Tests Marks)	End Sem Examination		
	1	2	(Marks)		
Remember(Re)	20	20	20		
Understand(Un)	20	20	40		
Apply (Ap)	10	10	20		
Analyze (An)	10	10	20		
Evaluate(Ev)	0	0	0		
Creative (Cr)	0	0	0		
Total	60	60	100		

	K.S.R	angasamy	_	Technology -				
				E16- BIO SIG		SSING		
Semester	M.E-VLSI Design nester Hours / Week Total Credit Maximum Mark					·ke		
Oemester	L				C	CA	ES	Total
II	3	0	0	Hours 45	3	40	60	100
SIGNAL, SYSTEM AND SPECTRUM Characteristics of some dynamic biomedical signals, Noises-random, structured and physiological noises, Filters-IIR and FIR filters, Spectrum- power spectral density function, cross-spectral density and coherence function, cepstrum and homomorphic filtering, Estimation of mean of finite time signals.								
Time series a segmentation simulator, spe Application in	nalysis- linea , adaptive se ectral estima heart rate va	ar prediction egmentation, ition-Blackm iriability, PC	models, pro application an Tukey n G signals.	ocess order es in EEG, PCG nethod, period	and HRV s	signals, mod	el based EC	G
ADAPTIVE FILTERING AND WAVELET DETECTION Filtering-LMS adaptive filter, adaptive noise cancelling in ECG, improved adaptive filtering in FECG, EEG and other applications in Bio signals, Wavelet detection in ECG- Structural features, matched filtering, adaptive wavelet detection, detection of overlapping wavelets.								
BIOSIGNAL CLASSIFICATION AND RECOGNITION Signal classification and recognition- statistical signal classification, linear discriminant function, direct feature selection and ordering, back propagation neural network based classification, Application in Normal versus Ectopic ECG beats and other biomedical applications								
TIME FREQUENCY AND MULTIVARIATE ANALYSIS Time frequency representation, spectrogram, Time-scale representation, scalogram, wavelet analysis-Data reduction techniques, ECG data compression, ECG characterization, Feature extraction- Wavelet packets, Multivariate component analysis –PCA, ICA.								
•	•		,				Tota	l hours: 45
Reference(s)		adical Signa	I Processina	Vol I and Vol	II CRC Pro	es Inc. Boos	Rato Florid	a 1000
i. Amon c	onen, bio-ini	culcal olylla	i i iocessing	VOLLATIO VOL	ii, ONO i-16	33 HIO., DUG	a Nato, i lonu	u 1999.
Pearson	education Lt	d., 2002		ond edition "[approach",
4. Raguvee		d AjithS.Bop		Sixth Edition, avelets Trans				pplications,
	j M.Rangayy		on, "Biomedio	cal Signal Ana	alysis-A case	study appro	oach", Wiley,	IEEE

S.No Topic No. of Hours

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

1	SIGNAL, SYSTEM AND SPECTRUM	
1.1	Characteristics of some dynamic biomedical signals	1
1.2	Noises-random, structured and physiological noises	1
1.3	FIR Filters	1
1.4	IIR filters	1
1.5	Power Spectral Density function	1
1.6	Cross spectral density function	1
1.7	Coherence function	1
1.8	Cepstrum and homomorphic filtering	1
1.9	Estimation of mean of finite time signals	1
2	TIME SERIES ANALYSIS AND SPECTRAL ESTIMATION	
2.1	Time series analysis, linear prediction models	1
2.2	Process order estimation	1
2.3	Non stationary process	1
2.4	Fixed segmentation and adaptive segmentation	1
2.5	Application in EEG,PCG and HRV signals	1
2.6	Model Based ECG Simulator	1
2.7	Spectral Estimation, Blackman Tuckey method	1
2.8	Periodogram and model based estimation	1
2.9	Application in heart rate variability, PCG Signals	1
3	ADAPTIVE FILTERING AND WAVELET DETECTION	l
3.1	Filtering, LMS Adaptive filter	1
3.2	Adaptive noise cancelling in ECG	1
3.3	Improved adaptive filtering in FECG	1
3.4	EEG and other applications in Bio Signals	1
3.5	Wavelet Detection in ECG	1
3.6	Structural features	1
3.7	Matched filtering	1
3.8	Adaptive Wavelet Detection	1
3.9	Detection of overlapping wavelets	1
4	BIOSIGNAL CLASSIFICATION AND RECOGNITION	
4.1	Signal Classification and recognition	1
4.2	Statistical Signal Classification	1
4.3	Linear discriminant function	1
4.4	Direct feature selection and ordering	2
4.5	Back Propagation neural network based classification	2
4.6	Application in Normal versus Ectopic ECG beats	1
4.7	Other medical applications	1
5	TIME FREQUENCY AND MULTIVARIATE ANALYSIS	I
5.1	Time frequency representation, Spectrogram	1
5.2	Time Scale Representation,	1
5.3	Scalogram	1
5.4	Wavelet Analysis, data reduction techniques	1
		l l

5.5	ECG data Compression	1
5.6	ECG Data Characterization	1
5.7	feature extraction	1
5.8	Wavelet Packets	1
5.9	Multivariate Component Analysis-PCA, ICA	1
	Total	45

1. Mr.P.Balamurugan—pbalamurugan@ksrct.ac.in

60 PVL E21	VLSI FOR WIRELESS COMMUNICATION	Category	L	Т	Р	Credit
001 72 221		PE	3	0	0	3

- To learn the design concepts of low noise amplifiers.
- To learn the various types of mixers designed for wireless communication.
- To learn and design PLL and VCO.
- To know the concepts of data converters in communication
- To learn the concepts of CDMA in wireless communication.

Prerequisite

Fundamentals of VLSI and Wireless Communication

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the concept of MOSFET and BJT Amplifier design.	Remember, Understand Analyze
CO2	Describe the concept of Mixer	Remember, Understand Apply
CO3	Describe the concept of frequency Synthesizers	Remember, Apply
CO4	Know the basic concept of data converters in communications.	Remember, Understand, Analyze
CO5	Describe the VLSI Implementation concept for wireless System.	Remember, Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	
CO2	3	3	3	3	
CO3	3	3	3	3	
CO4	3	2	3	3	3
CO5	3	2	3	3	3

1- low, 2- medium, 3- high

Bloom's Category	Continuous A	End Sem Examination	
	1	2	(Marks)
Remember(Re)	20	20	20
Understand(Un)	10	10	20
Apply (Ap)	20	30	50
Analyze (An)	10	0	10
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

Semester						
N.E-VLSI Design Semester Hours / Week Total Credit Maximum Marks L T P Hours C CA ES Total Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty r decide the number of hours for each unit depending upon the concepts and depth. Questions need be asked based on the number of hours notified against each unit in the syllabus. Components and Devices Integrated inductors- resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design - WidebandLNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion — Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer — Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers Fotal Mixer Total Mixer						
L T P Hours C CA ES Tot II 3 0 0 0 45 3 40 60 10 Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty r decide the number of hours for each unit depending upon the concepts and depth. Questions need be asked based on the number of hours notified against each unit in the syllabus. Components and Devices Integrated inductors- resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design - WidebandLNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion — Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer — Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers						
Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty r decide the number of hours for each unit depending upon the concepts and depth. Questions need be asked based on the number of hours notified against each unit in the syllabus. Components and Devices Integrated inductors- resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design - WidebandLNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion — Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer — Conversion Gain in Unbalanced Switching Mixer — Noise in Unbalanced Switching Mixer — A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers						
Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty r decide the number of hours for each unit depending upon the concepts and depth. Questions need be asked based on the number of hours notified against each unit in the syllabus. Components and Devices Integrated inductors- resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design - WidebandLNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion — Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer — Conversion Gain in Unbalanced Switching Mixer — A Practical Unbalanced Switching Mixer - Sampling Mixer - Noise in Unbalanced Switching Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers						
decide the number of hours for each unit depending upon the concepts and depth. Questions need be asked based on the number of hours notified against each unit in the syllabus. Components and Devices Integrated inductors- resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design - WidebandLNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers - Power Amplifiers. Mixers Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain - Distortion - Low Frequency Case: Analysis of Gilbert Mixer - Distortion - High-Frequency Case - Noise - A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer - Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers						
Integrated inductors- resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design - WidebandLNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion — Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer — Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers						
Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain - Distortion - Low Frequency Case: Analysis of Gilbert Mixer - Distortion - High-Frequency Case - Noise - A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer - Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers						
Frequency Synthesizers Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector — Analog Phase Detectors — Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application).						
Sub Systems Data converters in communications - adaptive Filters - equalizers and transceivers						
Implementations VLSI architecture for Multitier Wireless System - Hardware Design Issues for a Next generation CDMA System						
Total hours						
Text book(s):						
1. B.Razavi , 'RF Microelectronics' , 2 nd Edition Prentice Hall of India Private Ltd.,2013.						
 B.Razavi, 'RF Microelectronics', 2nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, 'VLSI for Wireless Communication', 2nd Edition, Springer US, 2014. Reference(s): 						
 B.Razavi , 'RF Microelectronics' , 2nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, 'VLSI for Wireless Communication', 2nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H.Lee, 'The Design of CMOS Radio Frequency Integrated Circuits', 2nd Edition, Cambridge University Press, 2013. 						
 B.Razavi , 'RF Microelectronics' , 2nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, 'VLSI for Wireless Communication', 2nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H.Lee, 'The Design of CMOS Radio Frequency Integrated Circuits'. 2nd 						

Course Contents and Lecture Schedule

S.No	Topic	No. of Hours
1	COMPONENTS AND DEVICES	
1.1	Integrated inductors- resistors	2
1.2	MOSFET and BJT Amplifier Design: Low Noise Amplifier Design	2
1.3	WidebandLNA - Design Narrowband LNA	2
1.4	Impedance Matching-Matching of Imaginary and real Part-Interpretation of Power	2

4. J. Crols and M. Steyaert, 'CMOS Wireless Transceiver Design', Springer, 2013.

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

	Matching	
1.5	Automatic Gain Control Amplifiers – Power Amplifiers	1
2	MIXERS	
2.1	Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain – Distortion	1
2.2	 Low Frequency Case: Analysis of Gilbert Mixer – Distortion - High-Frequency Case – Noise – A Complete Active Mixer 	2
2.3	Switching Mixer - Distortion in Unbalanced Switching Mixer – Conversion Gain in Unbalanced Switching Mixer	2
2.4	Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer	1
2.5	Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer	1
2.6	Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer	1
2.7	Extrinsic Noise in Single Ended Sampling Mixer.	1
3	FREQUENCY SYNTHESIZERS	
3.1	Phase Locked Loops - Voltage Controlled Oscillators	1
3.2	Phase Detector – Analog Phase Detectors	2
3.3	Digital Phase Detectors - Frequency Dividers	2
3.4	LC Oscillators - Ring Oscillators	1
3.5	Phase Noise	2
3.6	A Complete Synthesizer Design Example (DECT Application).	1
4	SUB SYSTEMS	
4.1	Introduction to subsystems	1
4.2	Data converters in communications (Analog)	2
4.3	Data converters in communications (Digital)	2
4.4	Adaptive Filters	2
4.5	Equalizers	1
4.6	Transceivers	1
5	IMPLEMENTATIONS	
5.1	Introduction	2
5.2	VLSI architecture for Multitier Wireless System	3
5.3	Introduction to CDMA	2
5.4	Hardware Design Issues for a Next generation CDMA System	2
_	Total	45

1. Mr.R.Satheeshkumar – satheeshkumar@ksrct.ac.in

60 PVL E22 SYSTEM ON CHIP

Category L T P Credit

		PE	3	0	0	3	
--	--	----	---	---	---	---	--

- To introduce architecture and design concepts underlying system on chips.
- To explain the knowledge of designing SoCs.
- To learn impart knowledge about the hardware-software design of a modest complexity chip all the way from specifications.
- To learn the modeling, synthesis and physical design.
- To learn the various FPGA base Embedded Processor

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

	·	
CO1	Explain all important components of a System-on-Chip and an embedded system,	Remember, Understand
CO2	Learn the digital hardware and Embedded software	Remember, Understand
CO3	Outline the major design flows for digital hardware and embedded software	Apply
CO4	Describe the major architectures and trade-offs concerning performance, cost and power	Remember, Understand
CO5	Outline the Consumption of single chip and embedded systems	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PEO1	PEO2	PEO3
CO1	3	3					3	3	
CO2	3	3		3		3	3	3	
CO3	3	3					3	2	
CO4	3	3		3		3	3	3	
CO5	3	3		3		3	3	3	
1- low 2	2- mediun	n 3- hiah							

Assessment Pattern

Bloom's Category		sessment Tests arks)	End Sem Examination
	1	2	(Marks)
Remember(Re)	20	20	30
Understand(Un)	30	20	40
Apply (Ap)	10	20	30
Analyze (An)	0	0	0
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

K.S.Rangasamy College of Technology – Autonomous R 2022

60 PVL E22- SYSTEM ON CHIP

Passed in BoS Meeting held on 13/05/2023 Approved in Academic Council Meeting held on 03/06/2023

			M.	E-VLSI Des	sign				
Semester	ŀ	lours / Wee	k	Total	Credit		Maximum I	Marks	
	L	Т	Р	Hours	С	CA	ES	Tot	al
II	3	0	0	45	3	40	60	10	0
SYSTEM AR Components interconnecti – cycle time, Configurabilit	of the syste on – SoC des lie area and c	em – Proce ign requiren	ssor architenents and s	pecification	s – design ir	ntegration -	– design com	nplexity	[9]
PROCESSO Overview — : interrupts and the cost of processors.	oft processo	ors, process Basic eleme	or core sel nts in instru	ction handli	ng – Minimiz	zing pipelir	ie delays – re	educing	[9]
MEMORY DI SoC external and write po caches — So interaction.	memory, So icies – strate	gies for line	replaceme	ent at miss	time - split	I- and D	caches – mı	ultilevel	[9]
INTERCONN Bus architect — Reconfigure Architecture	ures – SoC st able technolo	andard buse gies – mapp	es – AMBA, ping designs	Core Conne onto recor	ect – Proces nfigurable de	evices - FP	GA based d		[9]
	D EMBEDDI tware task pa Tool flow fo Types of C	ED PROCES artitioning — or Hardware on-chip inter	SSOR FPGA fabri Software (faces – W	c Immersed Co-design - ishbone int	d Processor Interfacing erface, Ava	s – Soft Pi Processoi Ion Switch	rocessors an r with memon n Matrix, OF and Condition	ory and PB Bus ning.	[9]
								Total hou	ırs: 45
Text book(s)			l. "O	4	ala alama a - C	01 '	- 2 AA/:L- L. 12	in Death I to	1
	ael J.Flynn ar								
Reference(s	e Furber, " AF •	tivi system (on Chip Arc	intecture ,	∠ ⊑uilion, <i>i</i>	2000, Add	ison wesley	Fiolessio	ııdı.
					10 1 0	01: 5		0000	
	a S.Chakrava	·				<u> </u>	- 		
2. Rain	er Leupers, C	livier Tema	m 'Process	or and Syst	tom on Chin	Simulation	n' Chrinaer	0040	

S. No	Topic	No. of Hours
1	SYSTEM ARCHITECTURE: OVERVIEW	

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

1.1	Components of the system	1
1.1	Processor architectures	1
1.3		1
	Memory and addressing	·
1.4	system level interconnection	1
1.5	SoC design requirements and specifications	1
1.6	design integration and design complexity	1
1.7	cycle time, die area and cost, ideal and practical scaling	1
1.8	Area-time-power tradeoff in processor design	1
1.9	Configurability	1
2	PROCESSOR SELECTION FOR SOC	
2.1	soft processors, processor core selection - Overview	1
2.2	Basic concepts – instruction set, branches, interrupts and exceptions	1
2.3	Basic elements in instruction handling	1
2.4	Minimizing pipeline delays	1
2.5	Reducing the cost of branches	1
2.6	Robust processors	1
2.7	Vector processors	1
2.8	VLIW processors	1
2.9	Superscalar processors	1
3	MEMORY DESIGN	
3.1	SoC external memory, SoC internal memory	1
3.2	Scratch pads and cache memory	1
3.3	cache organization and write policies	1
3.4	strategies for line replacement at miss time	1
3.5	split I- and D caches	1
3.6	multilevel caches	1
3.7	SoC memory systems	1
3.8	board based memory systems	1
3.9	simple processor/ Memory interaction	1
4	INTERCONNECT ARCHITECTURES AND SOC CUSTOMIZATION	
4.1	Bus architectures - Introduction	1
4.2	SoC standard buses	1
4.3	AMBA, Core Connect	1
4.4	Processor customization approaches	1
4.5	Reconfigurable technologies	1
4.6	mapping designs onto reconfigurable devices	1
4.7	FPGA based design	1
4.8	Architecture of FPGA, FPGA interconnect technology	1
4.9	FPGA memory, Floor plan and routing	1
5	FPGA BASED EMBEDDED PROCESSOR	
5.1	Hardware software task partitioning	1
5.2	FPGA fabric Immersed Processors	1
5.3	Soft Processors and Hard Processors	1
5.4	Tool flow for Hardware/Software Co-design	1
	•	

5.5	Interfacing Processor with memory and peripherals	1
5.6	Types of On-chip interfaces	1
5.7	Wishbone interface, Avalon Switch Matrix, OPB Bus Interface	1
5.8	Creating a Customized Microcontroller	1
5.9	FPGA-based Signal Interfacing and Conditioning	1
	Total	45

1. Mr.K.Rajasekar – rajasekar@ksrct.ac.in

60 PVL E23	MACHINE LEARNING TECHNIQUES	Category	L	т	Р	Credit
		PE	3	0	0	3

- To introduce the basic concepts and techniques of machine learning
- To familiarize the theoretical and practical aspects of linear models
- To study various dimensionality reduction techniques and distance based models
- To learn the theoretical and practical aspects of probabilistic graphic models
- To expose the concepts of reinforcement learning and its applications.

Prerequisite

NIL

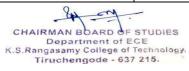
CourseOutcomes

On the successful completion of the course, students will be able to

CO1	Learn the mathematical foundations for machine learning.	Remember, Understand
CO2	Apply the appropriate machine learning techniques for classification and regression	Apply
CO3	Realize the concepts of clustering and dimensionality reduction techniques.	Apply,Analyse
CO4	Understand the learning algorithm for graphical model and ensemble methods	Apply, Analyse
CO5	Understand the basic concept of reinforcement leaning and its applications	Understand, Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		2	
CO2	3		3	2	3	
CO3	3		3	2	3	
CO4	3		3	2	3	
CO5	3		3	2	3	


1- low, 2- medium, 3- high

Bloom's Category	Continuo	us Assessment Tests (Marks)	End Sem Examination
	1	2	(Marks)
Remember(Re)	10	20	10
Understand(Un)	20	20	40
Apply (Ap)	30	20	50
Analyze (An)	0	0	0
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

		K.S.	Rangasamy	College of	Technology	y – Autonom	nous R 2022	2		
60 PVL E23 - MACHINE LEARNING TECHNIQUES										
Com			Harring / M/aa		VLSI Design		NA.	M		
Sem	ester	L	Hours / Wee	к Р	Total Hours	Credit C	CA	aximum Ma		otal
	II	3	0	0	45	3	40	60	_	00
Introduction Probability theory - model selection - Decision theory - Information theory - Entropy and mutual information. Types of machine learning - Supervised learning - Unsupervised learning - Reinforcement learning — Bias and variance — learning curve - Machine Learning applications								[9]		
Linear			regression- I on Trees- Ge					SVM, soft S	VM -	[9]
Distance Based Models & Dimensionality Reduction Nearest neighbour models - K means - clustering around medoids - Hierarchical clustering - Decision tree - Univariate tree - Multivariate trees - Dimensionality reduction - Principle Component Analysis - Linear Discriminant Analysis							[9]			
Undired Baggin	cted grap g, Comm	hical mode	nble Methods els, HMM, \ nes and Stad works.	/ariable Elir						[9]
Elemer	Reinforcement learning							[9]		
								Tot	al hou	rs: 45
Text bo		lach 'Mach	ino Lograina	The art an	d soiones of	algorithms 4	hat make se	noo of data	' Cam	hridas
1.	University Press, 2012.						briage			
2.		her M. Bisl	hop, 'Pattern	Recognition	and Machin	e Learning',	Springer, 20)13.		
Refere										
1.	Tom M	Mitchell, 'M	achine Learn	ing',1st Edit	tion, McGraw	/ Hill Educati	on,2017			
2.	K. P. M									
		urphy, 'Mac	hine Learning	g: A probabi	listic perspec		ress, 2012.			
3.	-	• •	chine Learning d, Machine Le	· ·	· · · · · · · · · · · · · · · · · · ·	ctive', MIT Pr		2014		

Course Contents and Lecture Schedule

S.No	Торіс	No.of Hours
1	Introduction	
1.1	Probability theory	1
1.2	model selection	1
1.3	Decision theory	1
1.4	Information theory	1
1.5	Entropy and mutual information	2
1.6	Types of machine learning - Supervised learning - Unsupervised learning - Reinforcement learning	1
1.7	Bias and variance – learning curve	1
1.8	Machine Learning applications	1

S.No	Торіс					
2	Linear Models					
2.1	Linear regression	2				
2.2	Logistic regression	1				
2.3	Perceptrons	2				
2.4	Support Vector Machines - hard SVM, soft SVM	1				
2.5	Classification and Regression Trees-	1				
2.6	Generalization and Overfitting	1				
2.7	Regularization.	1				
3	Distance Based Models & Dimensionality Reduction					
3.1	Nearest neighbour models- K means	2				
3.2	clustering around medoids	1				
3.3	Hierarchical clustering -	1				
3.4	Decision tree	1				
3.5	Univariate tree - Multivariate trees	1				
3.6	Dimensionality reduction	1				
3.7	Principle Component Analysis	1				
3.8	Linear Discriminant Analysis.	1				
4	Graphical Model & Ensemble Methods:					
4.1	Undirected graphical models	1				
4.2	НММ	1				
4.3	Variable Elimination, Belief Propagation	1				
4.4	Ensemble methods – Bagging	1				
4.5	Committee Machines and Stacking	1				
4.6	Boosting - Adaboost, Gradient Boosting	1				
4.7	Random Forest	1				
4.8	Naive Bayes, Bayesian networks	2				
5	Reinforcement learning					
5.1	Elements of reinforcement learning	2				
5.2	Model based learning	1				
5.3	Temporal Difference learning	1				
5.4	Generalization	1				
5.5	Learning an action -utility function	1				
5.6	Policy search	1				
5.7	Applications in Health care.	8				

1. Mrs.S.S.Thamilselvi - sstamilselvi@ksrct.ac.in

Category	L	Т	P	Credit
PE	3	0	0	3

- To learn the basics of FPGAs and DSP systems.
- To learn the different types of FPGA technologies.
- To understand the architectures and tools for FPGA based DSP systems.
- To know the concepts of IP cores and implementation for FPGA DSP systems.
- To learn low power FPGA Implementation

Prerequisite

Digital Logic Design and Digital Signal processing

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the fundamental of FPGAs and computer arithmetic unit of DSP systems	Remember, Understand
CO2	Analyze various FPGA technologies and implementation for DSP systems	Apply
CO3	Know the design requirements, concept and tools for FPGA based DSP architectures	Understand, Apply
CO4	Learn the concept of IP cores for FPGA complex DSP systems	Remember, Understand
CO5	Explain the power reduction techniques and architecture for low power FPGA implementation and application of FFT in VLSI	Remember, Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	3				
CO2	3	3	3	3				
CO3	3	3	3	3	3			
CO4	3	3	3	3	3			
CO5	3	3	3	3				
1- low 2- m	1- low 2- medium 3- high							

1- low, 2- medium, 3- high

Bloom's Category		Assessment Tests Marks)	End Sem Examination
Bioom's oategory	1	2	(Marks)
Remember(Re)	20	10	30
Understand(Un)	10	10	20
Apply (Ap)	30	30	30
Analyze (An)	0	10	20
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0
Total	60	60	100

Programmability, Challenges of FPGAs, DSP System Basics, DSP System Definitions, DSP Transforms, Filter Structures, Adaptive Filtering, Basics of Adaptive Filtering, Number Systems, Fixed-point and Floating-point, Arithmetic Operations, Fixed-point versus Floating-point. FPGA technologies and implementation issues Xilinx FPGA Technologies, Altera FPGA Technologies, Various Forms of the LUT, Memory Availability Fixed Coefficient Design Techniques, Distributed Arithmetic, Reduced Coefficient Multiplier Architectures and tools for FPGA based DSP systems The Evolution of FPGA System Design, Design Methodology Requirements for FPGA DSP, System Specification, IP Core Generation Tools for FPGA, System-level Design Tools for FPGA, DSP Algorithm Characteristics, DSP Algorithm Representations, Basics of Mapping DSP Systems onto FPGAs, Parallel Operation, Hardware Sharing, Application to FPGA. Complex DSP systems Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores, Parameterizable (Soft) IP Cores, IP Core Integration, IP Core Example, Current FPGA-based IP Cores, Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, System-level Design and Exploration of Dedicated Hardware. Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic. Text book(s): 1. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Sign Processing Systems', 2nd Edition, John Wiley and Sons, 2017. 2. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): 1. Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Edition, Pearson, 1993. 3. John G-Proakis, Dimitris Manolakis, 'Digital Signal Processing: Principles		K.S.I	Rangasamy	College of	Technology	/ – Autonon	nous R 202	2	
Semester	60	PVL E24 - FP	GA BASED				ROCESSING	G SYSTEMS	
II 3									/ C
Fundamentals of FPGAs and DSP Introduction to Field-programmable Gate Arrays, A Short History of the Microchip, Influence of Programmability, Challenges of FPGAs, DSP System Basics, DSP System Definitions, DSP Transforms, Filter Structures, Adaptive Filtering, Basics of Adaptive Filtering, Number Systems, Fixed-point and Floating-point, Arithmetic Operations, Fixed-point versus Floating-point, Arithmetic Operations, Fixed-point versus Floating-point. FPGA technologies and implementation issues Xilinx FPGA Technologies, Altera FPGA Technologies, Various Forms of the LUT, Memory Availability Fixed Coefficient Design Techniques, Distributed Arithmetic, Reduced Coefficient Multiplier Architectures and tools for FPGA based DSP systems The Evolution of FPGA System Design, Design Methodology Requirements for FPGA DSP, System Specification, IP Core Generation Tools for FPGA, System-level Design Tools for FPGA, DSP Algorithm Characteristics, DSP Algorithm Representations, Basics of Mapping DSP Systems onto FPGAs, Parallel Operation, Hardware Sharing, Application to FPGA. Complex DSP systems Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores, Parameterizable (Soft) IP Cores, IP Core Integration, IP Core Example, Current FPGA-based IP Cores, Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, System-level Design and Exploration of Dedicated Hardware. Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Ipelining, I	oemester.								
Introduction to Field-programmable Gate Arrays, A Short History of the Microchip, Influence of Programmability, Challenges of FPCAs, DSP System Basics, DSP System Definitions, DSP Transforms, Filter Structures, Adaptive Filtering, Basics of Adaptive Filtering, Number Systems, Fixed-point and Floating-point, Arithmetic Operations, Fixed-point versus Floating-point. FPGA technologies and implementation issues Xilinx FPGA Tachnologies, Altera FPGA Technologies, Various Forms of the LUT, Memory Availability Fixed Coefficient Design Techniques, Distributed Arithmetic, Reduced Coefficient Multiplier Architectures and tools for FPGA based DSP systems The Evolution of FPGA System Design, Design Methodology Requirements for FPGA DSP, System Specification, IP Core Generation Tools for FPGA, System-level Design Tools for FPGA, DSP Algorithm Characteristics, DSP Algorithm Representations, Basics of Mapping DSP Systems onto FPGAs, Parallel Operation, Hardware Sharing, Application to FPGA. Complex DSP systems Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores, Parameterizable (Soft) IP Cores, IP Core Integration, IP Core Example, Current FPGA-based IP Cores, Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, System-level Design and Exploration of Dedicated Hardware. Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic. Total hours: Text book(s): 1. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Signocessing Systems', 2nd Edition, John Wiley and Sons, 2017. 2. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Refererce(s): 1. Uwe Meyer Baese, 'Digital Signal Processing: Principles, Algorithms and Applicati	II	3	0						
Xilinx FPGA Technologies, Áltera FPGA Technologies, Various Forms of the LUT, Memory Availability Fixed Coefficient Design Techniques, Distributed Arithmetic, Reduced Coefficient Multiplier Architectures and tools for FPGA based DSP systems The Evolution of FPGA System Design, Design Methodology Requirements for FPGA DSP, System Specification, IP Core Generation Tools for FPGA, System-level Design Tools for FPGA, DSP Algorithm Characteristics, DSP Algorithm Representations, Basics of Mapping DSP Systems onto FPGAs, Parallel Operation, Hardware Sharing, Application to FPGA. Complex DSP systems Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores, Parameterizable (Soft) IP Cores, IP Core Integration, IP Core Example, Current FPGA-based IP Cores, Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, System-level Design and Exploration of Dedicated Hardware. Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic. Text book(s): 1. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Sign Processing Systems', 2 nd Edition, John Wiley and Sons, 2017. 2. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): 1. Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Edition, Pearson, 1993. 3. John G.Proakis, Dimitris Manolakis, 'Digital Signal Processing: Principles, Algorithms applications', 4 th Edition, Pearson Education, 2014.	Introduction to Field-programmable Gate Arrays, A Short History of the Microchip, Influence of Programmability, Challenges of FPGAs, DSP System Basics, DSP System Definitions, DSP Transforms, Filter Structures, Adaptive Filtering, Basics of Adaptive Filtering, Number Systems, Fixed-								[-]
The Evolution of FPGA System Design, Design Methodology Requirements for FPGA DSP, System Specification, IP Core Generation Tools for FPGA, System-level Design Tools for FPGA, DSP Algorithm Characteristics, DSP Algorithm Representations, Basics of Mapping DSP Systems onto FPGAs, Parallel Operation, Hardware Sharing, Application to FPGA. Complex DSP systems Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores, Parameterizable (Soft) IP Cores, IP Core Integration, IP Core Example, Current FPGA-based IP Cores, Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, System-level Design and Exploration of Dedicated Hardware. Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic. Text book(s): 1. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Sign Processing Systems', 2 nd Edition, John Wiley and Sons, 2017. 2. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): 1. Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Edition, Springer, 2014. 2. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2 nd Edition, Pearson, 1993. John G.Proakis, Dimitris Manolakis, 'Digital Signal Processing: Principles, Algorithms a Applications', 4 th Edition, Pearson Education, 2014.	Xilinx FPGA T	echnologies,	Altera FPGA	\ Technologi					ty [9]
Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores, Parameterizable (Soft) IP Cores, IP Core Integration, IP Core Example, Current FPGA-based IP Cores, Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, System-level Design and Exploration of Dedicated Hardware. Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic. Total hours: Text book(s): Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Sign Processing Systems', 2 nd Edition, John Wiley and Sons, 2017. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Editions', 4 th Edition, Pearson, 1993. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2 nd Edition, Pearson, 1993. John G.Proakis, Dimitris Manolakis, 'Digital Signal Processing: Principles, Algorithms and Applications', 4 th Edition, Pearson Education, 2014.	The Evolution of FPGA System Design, Design Methodology Requirements for FPGA DSP, System Specification, IP Core Generation Tools for FPGA, System-level Design Tools for FPGA, DSP Algorithm Characteristics, DSP Algorithm Representations, Basics of Mapping DSP Systems onto FPGAs, Parallel						m [9]		
Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic. Total hours: Text book(s): 1. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Signal Processing Systems', 2 nd Edition, John Wiley and Sons, 2017. 2. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): 1. Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Edition, Springer, 2014. 2. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2 nd Edition, Pearson, 1993. 3. John G.Proakis, Dimitris Manolakis, 'Digital Signal Processing: Principles, Algorithms and Applications', 4 th Edition, Pearson Education, 2014.	Motivation for (Soft) IP Cores and Rapid Imp	Design for Re , IP Core Integ	gration, IP Co	ore Example	e, Current FP	GA-based IF	Cores, Dat	taflow Modelir	ng [9]
Total hours: Text book(s): 1. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Sign Processing Systems', 2 nd Edition, John Wiley and Sons, 2017. 2. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): 1. Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Edition Springer, 2014. 2. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2 nd Edition, Pearson, 1993. 3. John G.Proakis, Dimitris Manolakis, 'Digital Signal Processing: Principles, Algorithms and Applications', 4 th Edition, Pearson Education, 2014.	Low Power FPGA Implementation Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures,						[9]		
1. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi, 'FPGA-based Implementation of Sign Processing Systems',2 nd Edition, John Wiley and Sons, 2017. 2. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): 1. Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Edition Springer, 2014. 2. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2 nd Edition, Pearson, 1993. 3. John G.Proakis, Dimitris Manolakis,'Digital Signal Processing: Principles, Algorithms and Applications', 4 th Edition, Pearson Education, 2014.								Total	hours: 45
Processing Systems',2 nd Edition, John Wiley and Sons, 2017. Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4 th Edition Springer, 2014. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2 nd Edition, Pearson, 1993. John G.Proakis, Dimitris Manolakis,'Digital Signal Processing: Principles, Algorithms and Applications', 4 th Edition, Pearson Education, 2014.									
 Wayne Wolf, 'FPGA-Based System Design', Prentice Hall, New Delhi, 2012. Reference(s): Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4th Editions, 2014. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2nd Edition, Pearson, 1993. John G.Proakis, Dimitris Manolakis, 'Digital Signal Processing: Principles, Algorithms and Applications', 4th Edition, Pearson Education, 2014. 	1 -				-		GA-based Ir	nplementatior	n of Signal
 Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', 4th Edition Springer, 2014. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2nd Edition, Pearson, 1993. John G.Proakis, Dimitris Manolakis,'Digital Signal Processing: Principles, Algorithms and Applications', 4th Edition, Pearson Education, 2014. 					•		ni, 2012.		
Springer, 2014. Neil H.E.Weste, Kamran Eshraghian, 'Principles of CMOS VLSI Design', 2 nd Edition, Pearson, 1993. John G.Proakis, Dimitris Manolakis,'Digital Signal Processing: Principles, Algorithms a Applications', 4 th Edition, Pearson Education, 2014.	Reference(s):								
John G.Proakis, Dimitris Manolakis,'Digital Signal Processing: Principles, Algorithms a Applications', 4 th Edition, Pearson Education, 2014.			e, 'Digital Si	gnal Proces	ssing with F	Field Progra	mmable Ga	ate Arrays', 4	th Edition,
Applications', 4 th Edition, Pearson Education, 2014.	2. Neil H	E.Weste, Ka	mran Eshrag	ghian, 'Princ	iples of CMC	S VLSI Des	ign', 2 nd Ed	dition, Pearsor	n, 1993.
	-2					I Processi	ng: Princi	ples, Algorit	hms and
4. Sanjit K.Mitra, 'Digital Signal Processing: A Computer based approach', 4 th Edition, McGraw-Hill, 201						ased approa	ch', 4 th Edit	ion, McGraw-	Hill, 2013.

S.No	Topic	No. of Hours
1	Fundamentals of FPGAs and DSP	1
1.1	Introduction to Field-programmable Gate Arrays	1
1.2	A Short History of the Microchip, Influence of Programmability,	1
1.3	Challenges of FPGAs	1
1.4	DSP System Basics, DSP System Definitions	1
1.5	DSP Transforms,	1
1.6	Filter Structures,	1
1.7	Adaptive Filtering, Basics of Adaptive Filtering	1
1.8	Number Systems, Fixed-point and Floating-point	1
1.9	Arithmetic Operations, Fixed-point versus Floating-point	1
2	FPGA technologies and implementation issues	I
2.1	Xilinx FPGA Technologies	2
2.2	Altera FPGA Technologies	2
2.3	Various Forms of the LUT	2
2.4	Memory Availability Fixed Coefficient Design Techniques	1
2.5	Distributed Arithmetic	1
2.6	Reduced Coefficient Multiplier	1
3	Architectures and tools for FPGA based DSP systems	
3.1	The Evolution of FPGA System Design	1
3.2	Design Methodology Requirements for FPGA DSP	1
3.3	System Specification, IP Core Generation Tools for FPGA	1
3.4	System-level Design Tools for FPGA	1
3.5	DSP Algorithm Characteristics	1
3.6	DSP Algorithm Representations	1
3.7	Basics of Mapping DSP Systems onto FPGAs	1
3.8	ParallelOperation	1
3.9	Hardware Sharing, Application to FPGA	1
4	Complex DSP systems	1
4.1	Motivation for Design for Reuse	1
4.2	Intellectual Property (IP) Cores	1
4.3	Evolution of IP Cores, Para meterizable (Soft) IP Cores	1
4.4	Para meterizable (Soft) IP Cores	1
4.5	IP Core Integration, IP Core Example	1
4.6	Current FPGA-based IP Cores	1
4.7	Data flow Modeling and Rapid Implementation for FPGA DSP Systems	1
4.8	System-level Design	1
4.9	Exploration of Dedicated Hardware	1
5	Low Power FPGA Implementation	I
5.1	Sources of Power Consumption	1
5.2	Power Consumption Reduction Techniques	1
5.3	Voltage Scaling in FPGAs	1
5.4	Reduction in Switched Capacitance	1

S.No	Topic	No. of Hours
5.5	Data Reordering	1
5.6	Fixed Coefficient Operation	1
5.7	Pipelining, Locality,	1
5.8	Application to an FFT Implementation, Reconfigurable Systems	1
5.9	Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic.	1
	Total	45

1. Mr.P.Balamurugan — pbalamurugan@ksrct.ac.in

60 PVL E25	NETWORK ON CHIP	Category	L	T	Р
		PE	3	0	0

- Understand the concept of Network on Chip
- Learn router architecture designs
- Study routing algorithm
- Study fault tolerance Network on Chip
- Learn Three-Dimensional Network on chip architectures

Prerequisite

Interconnection Networks

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Compare different architecture design	Analyse
CO2	Discuss different routing algorithms	Remember, Understand
соз	Explain three dimensional Networks on Chip architectures	Remember, Understand, Apply
CO4	Test and design fault tolerant NOC	Understand, Create
CO5	Design three dimensional architectures of NOC	Create

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3			3
CO2	3	3	3			3
CO3	3	3		3	3	3
CO4	3	3	3	3		3
CO5	3	3	3		3	3
1- low, 2- medium, 3- high						

Assessment Pattern

	Continuous Asses	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember(Re)	15	15	30	
Understand(Un)	20	20	30	
Apply (Ap)	25	25	30	
Analyze (An)	0	0	10	
Evaluate(Ev)	0	0	0	
Creative (Cr)	0	0	0	
Total	60	60	100	

Credit

3

	K	.S.Rangas	samy College	of Technol	ogy – Auton	omous R 2	022		
60 PVL E25 - NETWORK ON CHIP									
M.E-VLSI Design									
Semester	F	lours / We		Total	Credit		Maximum Maximu		
	L	Т	Р	Hours	С	CA	otal		
II	3	0	0	45	3	40	60	1	00
INTRODUCTION TO NOC Introduction to NOC – OSI Layer Rules in NOC - Interconnection Networks in Network-On-Chip Network Topologies - Switching Techniques - Routing Strategies - Flow Control Protocol Quality- of-Service Support									[9]
ARCHITEC	URE DESIGN								
Switching Te	echniques and Router Archited								[9]
ROUTING A	LGORITHM								
Efficient and	ing-QOS, Con Deadlock-Free h Networks- Fa	Tree-Bas	ed Multicast I	Routing Meth	nods - Path-Ba	ased Multic	ast Routing F	or 2D	[9]
TEST AND I Design-Secu	FAULT TOLER urity in Network lerance for Net	ANCE OF	NOC s-Formal Ver	ification of C	ommunication	ns in Netwo	orks-On Chips	s-Test	[9]
THREE-DIM Three-Dimei Chip Comm	ENSIONAL IN nsional Network unication in 3 n-Chip Protocol	TEGRATION TEGRAT	ON OF NETW os Architectur ctures - Resc	/ORK-ON-CI es – A Novel ource Alloca	HIP Dimensionall tion For QO	y-Decompo S On-Chip	sed Router fo Communicat	or On-	[9]
							Total h	nours	45
Text book(s									
	ostomos Nicop c Design Explo			arayanan •	Chita R. Das	s. Network-	on-Chip. Arcl	hitectur	es. A
2. Fayez CRC F	gebali, Haytha Press	am elmilig	i, Mohamed\	•				-	
3. Giovanni De Micheli, Luca Benini, Davide Bertozzi, Networks on Chips:Technology and Tools, Morg Kaufmann, 2006.								Morga	
Reference(s									
	antinos Tatas a							2013	
	, Maurizio, Dar								
ن. Kaufm	p Pasricha, N ann, 2010		·				Chip Interco	nnect,	Morga
José F	Flich and David all/CRC, 2011	e Bertozzi	, Designing N	etwork On-C	hip Architectu	ures in th	e Nanoscale	Era, Cl	napmai

Course Contents and Lecture Schedule

S.No	Торіс	No.of Hours
1	INTRODUCTION TO NOC	·
1.1	Introduction to NOC	1
1.2	OSI Layer Rules in NOC	1
1.3	Interconnection Networks in Network-On-Chip Network Topologies	2
1.4	Switching Techniques	1
1.5	Routing Strategies	2
1.6	Flow Control Protocol Quality- of-Service Support	2
2	ARCHITECTURE DESIGN	·

S.No	Topic	No.of Hours
2.1	Switching Techniques and Packet Format	2
2.2	Asynchronous FIFO Design	1
2.3	GALS Style of Communication	2
2.4	Wormhole Router Architecture Design	1
2.5	VC Router Architecture Design	2
2.6	Adaptive Router Architecture Design	1
3	ROUTING ALGORITHM	
3.1	Packet Routing	1
3.2	QOS, Congestion Control and Flow Control	1
3.3	Router Design	1
3.4	Network Link Design	1
3.5	Efficient and Deadlock	1
3.6	Free Tree-Based Multicast Routing Methods	1
3.7	Path-Based Multicast Routing For 2D and 3D Mesh Networks	1
3.8	Fault-Tolerant Routing Algorithms	1
3.9	Reliable and Adaptive Routing Algorithms	1
4		
4.1	Design-Security in Networks-On-Chips	2
4.2	Formal Verification of Communications in Networks-On Chips	3
4.3	Test and Fault Tolerance For Networks-On-Chip Infrastructures	2
4.4	Monitoring Services For Networks-On-Chips	2
5	·	
5.1	Three-Dimensional Networks-On-Chips Architectures	2
5.2	A Novel Dimensionally-Decomposed Router	2
5.3	Chip Communication in 3D Architectures	1
5.4	Resource Allocation For QOS On-Chip Communication	2
5.5	Networks-On-Chip Protocols Processor	1
5.6	Traffic Modeling For Networks- On-Chip	1
	Total	45

1. Mr.D.DHANASEKARAN – dhanasekarand@ksrct.ac.in

60 PVL E26	WIDEL FOR OFFICER METALORIZA	Category	L	Т	Р	Credit
	WIRELESS SENSOR NETWORKS	PE	3	0	0	3

- To understand the fundamentals of wireless sensor networks
- To familiarize with learning of the architecture of WSN
- To understand the concepts of MAC protocol in WSN
- To study the various routing protocols in WSN
- To understand the issues and challenges in security provisioning

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the fundamental concepts of wireless Sensor Networks and its applications	Understand
CO2	To gain knowledge about the sensor node and its architecture	Remember
CO3	Design and develop MAC Protocol	Apply
CO4	Illustrate the designing of various routing protocols	Apply
CO5	Analysis of various critical parameters in deploying a WSN	Apply

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3		3	
CO2	3	3	3		3	
CO3	3	3	3		3	
CO4	3	3	3		3	
CO5	3	3	3		3	

³⁻ Strong;2-Medium;1-Some

	Continuous Ass	essment Tests	
Cognitive Levels	1	2	End Semester Examination (Marks)
Remember	10	10	20
Understand	10	10	20
Apply	40	40	60
Analyse	-	-	-
Evaluate	-	-	-
Create	-	-	-

	K.S.Rangasamy College of Technology–AutonomousR2022											
60 PVL E26- WIRELESS SENSOR NETWORKS M.E-VLSI DESIGN												
	emester		lours/Week		Total hours	Credit		Maximum Ma	rke			
36	L T P C CA ES To					tal						
							100					
Intro	duction to	Wireless	Sensor Net	works: Intro	duction and ove	rview of Wire	less Sensor	Networks (W	SN),			
WSN	Standard	s, IEEE 802	2.15.4, Zigb	ee, Categor	y of Application	s of WSN, C	hallenges fo	or WSN, Enat	oling	[9]		
	nologies fo									[9]		
					, Energy Consum							
					Nodes, Network SNs, Service Inte				tion	[9]		
Coals	and ngui	es or merits,	Design prin	cibies ioi vv	ONS, OEIVICE IIII	eriaces for vv	orvo, Calewa	dy Concepts.				
MAC	Protocols	: Fundamer	ntals of MAC	Protocols, N	MAC Protocols for	r WSNs, Cont	ention-Based	d protocols: Po	wer			
			-		ng MAC, Conter			/-Energy Adap	otive	[9]		
Cluste	ering Hiera	archy, B-MA	C, S-MAC, [Disseminatio	Clustering Hierarchy, B-MAC, S-MAC, Dissemination Protocol for Large Sensor Network.							
	_		•		protocol, classifi		ing protocols	, table-driven,	on-	[9]		
	_		•		protocol, classific		ing protocols	, table-driven,	on-	[9]		
dema QoS	and Energ	, flooding, hi gy Manager	ierarchical, a	and power a	ware routing prot	ocols. ng QoS, class	sifications, M	AC, network l	ayer	[9]		
dema QoS soluti	and Energons, QoS f	, flooding, hi gy Manager rameworks,	ierarchical, a ment : Issue need for ene	and power a	ware routing prot	ocols. ng QoS, class	sifications, M	AC, network l	ayer	[9]		
dema QoS soluti	and Energons, QoS f	, flooding, hi gy Manager	ierarchical, a ment : Issue need for ene	and power a	ware routing prot	ocols. ng QoS, class	sifications, M	AC, network labourer, and sys	ayer stem	[9]		
QoS soluti powe	and, hybrid and Energons, QoS f r manager	, flooding, hi gy Manager rameworks,	ierarchical, a ment : Issue need for ene	and power a	ware routing prot	ocols. ng QoS, class	sifications, M	AC, network l	ayer stem			
QoS soluti powe	and Energons, QoS f	, flooding, hi gy Manager rameworks,	ierarchical, a ment : Issue need for ene	and power a	ware routing prot	ocols. ng QoS, class	sifications, M	AC, network labourer, and sys	ayer stem	[9]		
QoS soluti powe	and Energons, QoS fr manager	, flooding, higy Manager frameworks, ment scheme	ierarchical, a ment : Issue need for ene es.	and power a es and Chall ergy manage	ware routing prot	ocols. ng QoS, class ion, battery, tr	sifications, M ransmission p	AC, network landsys TotalHo	ayer stem	[9]		
QoS solution power Texts	and Energons, QoS fr manager	, flooding, higy Manager frameworks, ment scheme	ierarchical, a ment : Issue need for ene es.	and power a es and Chall ergy manage	ware routing prot lenges in providir ement, classificat	ocols. ng QoS, class ion, battery, tr	sifications, M ransmission p	AC, network landsys TotalHo	ayer stem	[9]		
QoS solution power Texts	and, hybrid and Energons, QoSf r manager Book(s): C. Siva F	, flooding, higy Manager gy Manager rameworks, ment scheme	ierarchical, ament: Issue need for endes.	and power a es and Chall ergy manage	ware routing prot lenges in providir ement, classificat	ocols. ng QoS, classion, battery, tr	sifications, M ransmission p	AC, network labourer, and sys TotalHo - 2008.	ayer stem	[9]		
QoS soluti powe Texts 1.	and, hybrid and Energons, QoS f r manager Book(s): C. Siva F rence(s):	, flooding, higy Manager gy Manager frameworks, ment scheme Ram Murthy, ao and Leon	ierarchical, ament: Issue need for endes. , and B. S. MaidesGuibas	and power a es and Chall ergy manage Manoj, "AdHo	ware routing protenges in providirement, classificat	ocols. ng QoS, classion, battery, tr orks ", Pearso ', Elsevier put	sifications, M ransmission p on Education olication - 20	AC, network labourer, and sys TotalHo - 2008.	ayer stem	[9]		

Contents and Lecture Schedule

Module No.	Topic	No. of Hours
1	Introduction to Wireless Sensor Networks	
1.1	Introduction and overview of Wireless Sensor Networks (WSN)	1
1.2	WSN Standards	1
1.3	IEEE 802.15.4	1
1.4	Zigbee	1
1.5	Category of Applications of WSN	2
1.6	Challenges for WSN	1
1.7	Enabling Technologies for WSN	2
2	Single node Architecture:	
2.1	Hardware Components	1
2.2	Energy Consumption of Sensor nodes	1
2.3	Operating Systems and Execution Environments	1
2.4	Examples of Sensor Nodes	1

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology
Tiruchengode - 637 215.

Passed in BoS Meeting held on 13/05/2023 Approved in Academic Council Meeting held on 03/06/2023

2.5	Network Architecture: WSN Scenarios	1
2.6	Optimization Goals and figures of Merits	1
2.7	Design principles for WSNs	1
2.8	Service Interfaces for WSNs	1
2.9	Gateway Concepts	1
3	MAC Protocols	
3.1	Fundamentals of MAC Protocols	1
3.2	MAC Protocols for WSNs	1
3.3	Contention-Based protocols : Power Aware Multi-Access with Signaling	1
3.4	Data-Gathering MAC	1
3.5	Contention-Free Protocols	1
3.6	Low-Energy Adaptive Clustering Hierarchy	1
3.7	B-MAC	1
3.8	S-MAC	1
3.9	Dissemination Protocol for Large Sensor Network	1
4	Routing Protocols:	
4.1	Issues in designing a routing protocol	1
4.2	Classification of routing protocols	2
4.3	Table-driven, on-demand,	2
4.4	Hybrid, flooding	2
4.5	Hierarchical,	1
4.6	Power aware routing protocols	1
5	QoS and Energy Management	
5.1	Issues and Challenges in providing QoS	2
5.2	Classifications	1
5.3	MAC	1
5.4	Network layer solutions	1
5.5	QoS frameworks	1
5.6	Need for energy management	1
5.7	Classification, battery,	1
5.8	Transmission power, and system power management schemes.	1
	Total Hours	45

1. K.Rajasekar - rajasekark@ksrct.ac.in

60 PAC 001

ENGLISH FOR RESEARCH PAPER WRITING

Category	L	Т	Р	Credit
AC	2	0	0	0

Objective

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability
CO2	Learn about what to write in each section
CO3	Understand the skills needed when writing a Title
CO4	Understand the skills needed when writing the Conclusion
CO5	Ensure the good quality of paper at very first-time submission

Bloom's Category	Continuous Assessment Tests(Marks)			
Bloom's Category	1	2		
Remember(Re)	10	10		
Understand(Un)	20	20		
Apply (Ap)	30	30		
Analyze (An)	0	0		
Evaluate(Ev)	0	0		
Creative (Cr)	0	0		
Total	60	60		

Semester	K.S.Rangasamy College of Technology – Autonomous R2022									
Hours/Week Total hrs Credit Maximum Marks Total hrs C CA ES Total	60 PAC 001 – English for Research Paper Writing									
Introduction to Research Paper Writing Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness [6]										
Itili	Sen	nester	H.	ours/Week						3
Introduction to Research Paper Writing Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness [6]				•					ES	Total
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness Presentation Skills Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts, Introduction Title Writing Skills Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check Result Writing Skills Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Verification Skills Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first time submission Total Hours 30 Text Book(s): 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011 2. Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006 Reference(s): 1. Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 2. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. 3. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018				•		30	0	100	-	100
Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts, Introduction Title Writing Skills Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check Result Writing Skills Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Verification Skills Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first time submission Total Hours 30 Text Book(s): 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011 2. Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006 Reference(s): 1. Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 2. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. 3. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018	Plann	ing and F	Preparation, V	Vord Order,	Breaking up	long sentences ng Ambiguity ar	s, Structuring nd Vaguenes	Paragraphs an s	d Sentences,	[6]
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check Result Writing Skills	Clarif	ying Who	Did What, H			s, Hedging and	Criticizing, P	araphrasing an	d Plagiarism,	[6]
Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Verification Skills Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first time submission Total Hours 30 Text Book(s): 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011 2 Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006 Reference(s): 1. Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 2. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. 3. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018	Key s	skills are ed when	needed whei writing an Ir	ntroduction,	skills need	ed when writing				[6]
Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first time submission Total Hours 30 Text Book(s): 1. Addrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011 2 Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006 Reference(s): 1. Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 2. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. 3. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018	Skills writing	are need g the Disc	led when writ cussion, skills					sults, skills are r	needed when	[6]
Text Book(s): 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011 2. Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006 Reference(s): 1. Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 2. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. 3. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018	Usefu	ıl phrases		Plagiarism, I	now to ensu	re paper is as g	ood as it cou	uld possibly be	the first time	[6]
 Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011 Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006 Reference(s): Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018 								30		
 Reference(s): Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018 		Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London,							don,	
 Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018 	2	Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006								
 Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998. Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018 	Refer	Reference(s):								
Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018	1.	1. Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006								
	2.	2. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998.								
4. Sudhir S. Pandhye, English Grammar and Writing Skills, Notion Press, 2017.	3.	Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018								
	4.	Sudhir S. Pandhye, English Grammar and Writing Skills, Notion Press, 2017.								

60 PAC 002 DISASTER MANAGEMENT

Category	L	Т	Р	Credit
AC	2	0	0	0

- · Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Ability to summarize basics of disaster
CO2	Ability to explain a critical understanding of key concepts in disaster risk reduction and
	humanitarian response.
CO3	Ability to illustrate disaster risk reduction and humanitarian response policy and practice
	from multiple perspectives.
CO4	Ability to describe an understanding of standards of humanitarian response and practical
	relevance in specific types of disasters and conflict situations.
CO5	Ability to develop the strengths and weaknesses of disaster management approaches

Bloom's Category	Continuous Assessment Tests (Marks)			
Bloom's Category	1	2		
Remember(Re)	10	10		
Understand(Un)	20	20		
Apply (Ap)	30	30		
Analyze (An)	0	0		
Evaluate(Ev)	0	0		
Creative (Cr)	0	0		
Total	60	60		

K.S. Rangasamy College of Technology – Autonomous R2022								
60 PAC 002 – Disaster Management								
Common to all Branches								
Semeste	er F	lours/Week T	Р	Total hrs	Credit C	CA	laximum Marks	Total
1/11	2	0	0	30	0	100	-	100
Introduct	ion			I	ı	ı		
	Definition, Factor Disasters: Differ				veen Hazard	and Disaste	r; Natural and	[6]
Economic Earthquak Man-made	sions of Disast Damage, Loss es, Volcanisms, disaster: Nucle and Epidemics, W	of Humar Cyclones, T ar Reactor	n and Anim sunamis, Flo Meltdown,	oods, Droughts <i>i</i>	And Famines	, Landslides A	nd Avalanches	, [6]
Study of S	Prone Areas In I Seismic Zones; A and Coastal Haza	reas Prone						[6]
Preparedr Remote S Communi	Preparedness an ess: Monitoring Sensing, Data f ty Preparedness.	of Phenome rom Meteo	ena Triggerir					
Technique	essment Risk: Concept and es of Risk Ass on in Risk Asses	essment, C	Global Co-C	peration in Ri				
							Total Hours	30
1. Goo	Text Book(s): 1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication I Ltd., New Delhi,2009.							
² Cor	Company,2007.							yal book
Reference(s):								
1. Sahni, Pardeep et.al.," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, 2001.								
2. Subramanian R,"Disaster Management", Vikas publishing Housing Pvt. Ltd., 2018.								
3. Chu-hua Kuei, Christian N Madu, Handbook of Disaster Management Risk Reduction & Management: Clark change and Natural Disaster, world scientific, 2017.						Climate		
4. Jan								

60 PAC 003 CONTITUTION OF INDIA

Category	L	Т	Р	Credit
AC	2	0	0	0

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional.
 Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolutionin1917and its impact on the initial drafting of the Indian Constitution.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians before
	the arrival of Gandhi in Indian politics.
CO2	Discuss the intellectual origins of the framework of argument that informed
	the conceptualization of social reforms leading to revolution in India
CO3	Discuss the circumstances surrounding the foundation of the Congress Socialist Party
	[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal
	of direct elections through adult suffrage in the Indian Constitution.
CO4	Discuss the passage of the Hindu Code Bill of 1956.
CO5	Discuss the role and functioning of election commission of India.

Bloom's Category	Continuous Assessment Tests(Marks)		
Bloom's Category	1	2	
Remember(Re)	10	10	
Understand(Un)	20	20	
Apply (Ap)	30	30	
Analyze (An)	0	0	
Evaluate(Ev)	0	0	
Creative (Cr)	0	0	
Total	60	60	

	K.S.Rangasamy College of Technology – Autonomous R2022						22		
60 PAC 003 – Constitution of India Common to all Branches									
			Hours/Weel			Credit	N	laximum Marl	(S
Ser	mester	L	T	Р	Total hrs	C	CA	ES	Total
	1/11	2	0	0	30	0	100	-	100
			e Indian Co ee, (Compo	onstitution osition & Wo	orking)				[3]
		f The India ient Feature	ı n Constitu es	tion					[3]
Fund of Re	damental eligion, C	Rights, Rigl	ht to Equalit Educationa		Freedom, Right ght to Constituti				[6]
Parlia Pres	ament, C ident, G	overnor, C		Ministers,	Disqualifications Judiciary, App				[6]
Distri Elect Elect Hiera	ted Repre ted officia	inistration I sentative, 0 Ils and thei ferent depa	CEO, Munici r roles, CE	ipal Corpora O Zila Pand	tance Municipa tion. Panchaya chayat: Positior Role of Elected	t raj: Introduc n and role. E	tion, PRI: Žila lock level: Oi	Panchayat.	[6]
Elect	tion Comr	nission: Ro	Election Commission Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.						
							d Election Co	mmissioners	[6]
Tov	· Pack/c\							mmissioners	[6] 30
Text	The Cor		the welfare	of SC/ST/O		1.			
	The Cor	nstitution of	the welfare India,1950	of SC/ST/O	BC and womer	blication.	-		
1.	The Cor	nstitution of N, Ambedka	the welfare India,1950	of SC/ST/O	BC and womer	blication.	-		
1.	The Cor Busi S N	nstitution of N, Ambedka	the welfare India,1950 ar B R, "Frai	of SC/ST/O	BC and womer	blication.	-		
1. 2 Refe	The Cor Busi S N erence(s)	nstitution of N, Ambedka : P, "Indian C	India,1950 ar B R, "Frai	of SC/ST/O (Bare Act),(ming of India Law", 7th E	BC and womer Government Pu an Constitution	blication. ',1st Edition, exis,2014	2015.		
1. 2 Refe	The Cor Busi S N erence(s) Jain, M Basu, D	nstitution of N, Ambedka : P, "Indian C D, "Introdu	India,1950 ar B R, "Frai	of SC/ST/O (Bare Act), ming of India Law", 7th E Constitution	BC and womer Government Pu an Constitution dition, Lexis Ne	blication. ',1st Edition, exis,2014 s Nexis, 201	2015. 5.		

CO DV4 204	VLSI Signal Processing	Cate
60 PVL 301	VLSI Signal Processing	ı

Category	L	Т	Р	Credit
PC	3	0	0	3

- To learn the different types of Digital filters.
- To know the concepts of iteration bound.
- To learn the various transformations include retiming folding and unfolding.
- To acquire knowledge in pipelining and parallel processing.
- To learn the concepts of fast convolution and algorithmic strength reduction.

Prerequisite

Digital Signal Processing

Course Outcomes

On the successful completion of the course, students will be able to

	<u> </u>	
CO1	Design FIR and IIR digital filters	Remember, Understand, Apply
CO2	Apply various algorithms to compute iteration bound of DSP system	Apply
CO3	Describe the concepts of pipelining and parallel processing of FIR digital filters.	Remember, Understand, Apply
CO4	Design a high-level architectural transformation which includes retiming folding and unfolding	Apply, Analyze
CO5	Describe the techniques of fast convolution algorithm and architecture strength reduction in filters.	Apply

Mapping with Programme Outcomes

PO1	PO2	PO3	PO4	PO5	PO6		
3	3	3	3	3	3		
3	3	3	2	2	3		
3	3	3	3	3	3		
3	3	3	2	2	3		
3	3	3	2	3	3		

Bloom's Category		Assessment Tests Marks)	End Sem Examination
	1 2		(Marks)
Remember(Re)	15	15	30
Understand(Un)	15	15	30
Apply (Ap)	20	20	20
Analyze (An)	10	10	20
Evaluate(Ev)	0	0	0
Creative (Cr)	0	0	0

Total 60	60	100
----------	----	-----

		K.S. Ran	gasamy Co	llege of Tec	hnology – <i>F</i>	Autonomous	R 2022			
			60 PVL	301- VLSI S	Signal Proce	essing				
				M.E-VLS	Design	-				
Semeste	r	Hours / We		Total	Credit		Maximum			
	L	Т	Р	Hours	С	CA				
	3	0	0	45	3	40	60	100		
	on Of Digita lesign - IIR	a l Filters filter design -	- Direct form	I, II, Cascad	e, parallel, L	adder - Latti	ce filters.		[9]	
Iteration	Bound									
		w graph rep ion Bound of				on bound, A	lgorithms for	computing	[9]	
•	•	Ilel Process ng of FIR Dig	_	arallel proce	ssing - Pipel	ining and pa	rallel processi	ing for Low	[9]	
UNFOLD retiming -	G- Introduct NG: Introdu Application	ction - An alo	gorithm for u	nfolding - Pro Introduction	operties of un - folding Tra	nfolding - Cri	s - Retiming To itical path, unf - Register M	folding and	[9]	
	om algorithr c strength i						fied Winograd architectures		[9]	
ordor med	•						To	otal hours	45	
Text boo										
1. 2008	•	VLSI Digital S	Signal Proce	ssing Systen	ns Design ar	nd Implemen	tation', Wiley	- Inter scien	ce,	
	G Proakis a son, 2011.	and Dimitris (G Manolakis,	ʻDigital sign	al processin	g – Principle	s, Algorithms	and Applica	tions',	
Referenc	e(s):									
S.Y.	S.Y. Kuang, H.J. White house, T. Kailath, 'VLSI and Modern Signal Processing', Prentice Hall of India Private									
2. Uwe	Uwe Meyer Baese, 'Digital Signal Processing with Field Programmable Gate Arrays', Springer, 2014.									
3. Lonn	e C Ludem	an, 'Fundam	entals of Dig	ital Signal Pr	rocessing', V	Viley India (F	P) Ltd., 2009.			
4. Pete	Pirsch 'Arc	hitectures fo	r Digital Sign	al Processin	g', Wiley Inc	dia (P) Ltd., 2	2009.			

Course Contents and Lecture Schedule

S.No	Topic	No. of Hours
1	Realization of Digital Filters	
1.1	FIR Filter Design	1
1.2	IIR Filter Design	1
1.3	Direct form I Realization	1
1.4	Direct form II Realization	1
1.5	Cascade Realization	1

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

5.2 5.3 5.4 5.5 5.6 5.7 5.8	Register Minimization Techniques Register Minimization in folded Architectures Fast Convolution Introduction Cook - Toom algorithm Modified Cook - Toom algorithm Winograd algorithm Modified Winograd algorithm Algorithmic strength reduction in filters and transforms Parallel FIR filters Parallel architectures for Rank-order filter.	1 1 1 1 1 1 2 1
5.3 5.4 5.5 5.6	Register Minimization in folded Architectures Fast Convolution Introduction Cook - Toom algorithm Modified Cook - Toom algorithm Winograd algorithm Modified Winograd algorithm Algorithmic strength reduction in filters and transforms	1 1 1 1 1 2
5.3 5.4 5.5	Register Minimization in folded Architectures Fast Convolution Introduction Cook - Toom algorithm Modified Cook - Toom algorithm Winograd algorithm Modified Winograd algorithm	1 1 1 1 1 1
5.3 5.4	Register Minimization in folded Architectures Fast Convolution Introduction Cook - Toom algorithm Modified Cook - Toom algorithm Winograd algorithm	1 1 1 1 1
5.3	Register Minimization in folded Architectures Fast Convolution Introduction Cook - Toom algorithm Modified Cook - Toom algorithm	1 1 1 1
	Register Minimization in folded Architectures Fast Convolution Introduction Cook - Toom algorithm	1 1 1
5.2	Register Minimization in folded Architectures Fast Convolution Introduction	1
	Register Minimization in folded Architectures Fast Convolution	1
5.1	Register Minimization in folded Architectures	
5	-	
4.9	Register Minimization Techniques	1
4.8	i -	
4.7	Folding Transformation	1
4.6	FOLDING: Introduction	1
4.5	Application of unfolding	1
4.4	Properties of unfolding, Critical path, unfolding and retiming	1
4.3	UNFOLDING: Introduction, An algorithm for unfolding	1
4.2	Solving system of Inequalities, Retiming Techniques	1
4.1	RETIMING- Introduction - Definitions and Properties	1
4	Transformations	
3.5	Parallel processing for Low power	2
3.4	Pipelining for Low power	2
3.3	Parallel processing	2
3.1	Pipelining of FIR Digital filters	2
3.1	Introduction	1
2.5 3	Pipelining and Parallel Processing	
2.4	Algorithms for computing Iteration bound Iteration Bound of Multirate Data - Flow Graphs	2
	loop bound and Iteration bound	2
2.2	Data flow graph representations	2
2.1	Introduction	2
2		
1.8	Lattice filters	2
1.7	Ladder form realization	1
1.6	Parallel Realization	1

1. Mr.S.Saravanan – saravanan.s@ksrct.ac.in

		Category	L	Т	Р	Credit
60 PVL E31	DSP STRUCTURES FOR VLSI	PE	3	0	0	3

- To understand the fundamentals of DSP
- To learn various DSP structures and their implementation.
- To know designing constraints of various filters
- Design and optimize VLSI architectures for basic DSP algorithms
- To enable students to design VLSI system with high speed and low power.

Prerequisite

Digital Signal Processing

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquired knowledge about fundamentals of DSP processors.	Understand, Apply
CO2	Improve the overall performance of DSP system through various transformation and optimization techniques.	Understand, Apply
CO3	To understand the need of different types of instructions for DSP.	Understand, Apply
CO4	Optimize design in terms of computation complexity and speed.	Apply
CO5	Understand clock based issues and design asynchronous and wave pipelined systems.	Remember, Understand

Mapping with Programme Outcomes

mapping with rogitation outcomes							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3	3		3	
CO2	3	3	3	3		3	
CO3	3	3	3	3		3	
CO4	3	3	3	3		3	
CO5	3	3	3	3		3	

Cognitive	Continuous	Assessment Tests	End Semester
Levels	1	2	Examination(Marks)
Remember	10	10	10
Understand	10	20	30
Apply	40	30	60
Analyse	-	-	-
Evaluate	-	-	-
Create	-	-	-

K. S. Rangasamy College of Technology – Autonomous R2022								
60 PVL E31 – DSP STRUCTURES FOR VLSI								
M.E-VLSI DESIGN								
Semester		Hours / We		Total hrs	Credit		Maximum Mark	
	L	T	Р		С	CA	ES	Total
III	3	0	0	45	3	40	60	100
NTRODUCTIO	N TO DIGIT	TAL SIGNA	AL PROCE	SSING				
∟inear system t	heory- conv	olution- co	rrelation - D	FT- FFT- basi	c concepts i	n FIR filters a	nd IIR	
ilters- filter real	izations. Re	presentation	ons of DSP	algorithms- blo	ock diagram-	-SFG-DFG.		[9]
TERATION BO	OUND, PIPE	LINING A	ND PARAL	LEL PROCES	SING OF FI	R FILTER		
Data-flow graph								
teration bound-					ıg: pipelining	ı of FIR digital	l filters parallel	
processing, pip	elining and _l	parallel pro	cessing for	low power.				[9]
RETIMING, UN	FOLDING A	AND FOLD	ING					
Retiming: defini								
critical path, U								[9]
minimization techniques, register minimization in folded architecture- folding of multirate system.								
FAST CONVOI		<i>c</i>				e t m		
Cook-toom algo					fast convolu	tion algorithm	by inspection	[9]
- Williegrad algoritim- modified Williegrad algoritim.								
ARITHMETIC S								
Parallel FIR filte		_		•				[9]
order filters -od					architecture-	-parallel rank	order filters-	
running order, merge order sorter, low power rank order filter.								
Total Hours						45		
Reference(s):								
1. K.K Parhi: "VLSI Digital Signal Processing", John-Wiley, 2nd Edition Reprint, 2008.								
John G.Proakis, Dimitris G.Manolakis, "Digital Signal Processing", Prentice Hall of India, 1st Edition, 2009.								
2. John G.F	roakio, Diri	iii o o.iviai	iolakio, Dig	inai Oigilai i 10	ooooning , i it		maia, r Laitie	, 2000

Course Contents and Lecture Schedule

Module No.	Topic	No. of Hours
1	INTRODUCTION TO DIGITAL SIGNAL PROCESSING	
1.1	Linear system theory, convolution and correlation	1
1.2	DFT & FFT	2
1.3	Basic concepts in FIR filters and IIR filters	2
1.4	Filter realizations	2
1.5	Representations of DSP algorithms- block diagram, SFG, DFG.	2
2	ITERATION BOUND, PIPELINING AND PARALLEL PROCESSING OF FIR FILTER	
2.1	Data-flow graph representations	1

2.2	Loop bound and Iteration bound algorithms for computing iteration bound	2
2.3	LPM algorithm	2
2.4	Ppipelining of FIR digital filters parallel processing,	2
2.5	Pipelining and parallel processing for low power	2
3	RETIMING, UNFOLDING AND FOLDING	
3.1	Retiming: definitions, properties and problem solving systems of inequalities	2
3.2	Properties of Unfolding, critical path, Unfolding and Retiming	2
3.3	Applications of Unfolding	1
3.4	Folding transformation register minimization techniques	2
3.5	Register minimization in folded architecture	1
3.6	Folding of multirate system	1
4	FAST CONVOLUTION	
4.1	Cook-toom algorithm	2
4.2	modified cook-Toom algorithm	2
4.3	Design of fast convolution algorithm	2
4.4	Byinspection - Winograd algorithm	2
4.5	Modified Winograd algorithm	1
5	ARITHMETIC STRENGTH REDUCTION IN FILTERS	
5.1	Parallel FIR filters	1
5.2	Fast FIR algorithms-two parallel and three parallel	2
5.3	Parallel architectures for rank order filters -odd-even	2
5.4	Merge-sort architecture-rank order filter architecture	1
5.5	Parallel rank order filters	1
5.6	Running order merge order sorter	1
5.7	Low power rank order filter	1
	Total Hours	45

Ms.C.Saraswathy - saraswathy@ksrct.ac.in

60 PVL E32	APPLIED MEDICAL IMAGE PROCESSING

Category	L	Т	Р	Credit
PE	3	0	0	3

- To introduce the fundamentals of image processing techniques
- To apply the enhancement techniques and analyse the image
- To learn about medical image representation
- To analyse the quality of medical image and do classification
- To study about image registrations and visualizations

Prerequisite

NIL

CourseOutcomes

On the successful completion of the course, students will be able to

CO1	Explain the fundamentals of image processing	Remember, Understand
CO2	Analyze Morphology, enhancement techniques and implement these in image	Apply
CO3	Understand the representation of medical images	Understand Apply
CO4	Analyze medical images of numerous modalities such as PET, MRI, CT, or microscopy	Apply, Analyse
CO5	Study image registrations and visualization	Understand, Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		2	
CO2	3		3	2	3	
CO3	3		3	2	3	
CO4	3		3	2	3	
CO5	3		3	2	3	

Bloom'sCategory	Continuou	sAssessmentTests (Marks)	End Sem
Bloom soategory	1	2	Examination(Marks)
Remember	10	10	30
Understand	20	20	30
Apply	30	25	30
Analyse	0	5	10
Evaluate	0	0	0
Create	0	0	0
Total	60	60	100

K.S.Rangasamy College of Technology – Autonomous R 2022									
		60 PVL	E32- APPLIE			OCESSING			
		lours / We		LE-VLSI Des	sign Credit		Maximum I	Morko	
Semester	L	T	P	Total Hours	Credit	CA	ES	To	tal
III	3	0	0	45	3	40	60	10	
IMAGE FUNDAMENTALS Image perception, MTF of the visual system, Image fidelity criteria, Image model, Image sampling and quantization – two dimensional sampling theory, Image quantization, Optimum mean square quantizer, Image transforms – DFT, DCT, KLT,SVD.									
IMAGE ENHANCEMENT AND RESTORATION Histogram equalization and specification techniques, Noise distributions, Spatial averaging, Directional Smoothing, Median, Geometric mean, Harmonic mean, Contra harmonic mean filters, Homomorphic filtering, Color image enhancement. Image Restoration - degradation model, Unconstrained and constrained restoration, Inverse filtering- Wiener filtering.								[9]	
MEDICAL IMAGE REPRESENTATION Pixels and voxels – algebraic image operations - gray scale and color representation- depth-color and look up tables - image file formats- DICOM- other formats- Analyze 7.5, NifTI and Interfile, Image quality and the signal to noise ratio.									[9]
Image segr analysis, Fe	MAGE ANALY nentation- pixe ature extraction Rule based, N	el based, en and repre	edge based, esentation, St	region base atistical, Sha					[9]
— Statistical, Rule based, Neural Network approaches. IMAGE REGISTRATIONS AND VISUALIZATION Rigid body visualization, Principal axis registration, Interactive principal axis registration, Feature based registration, Elastic deformation based registration, Image visualization — 2D display methods, 3D display methods, virtual reality based interactive visualization.								[9]	
							Tot	al hours	45
Text book(s									
1. Atam P.Dhawan, 'Medical Image Analysisli', Wiley Interscience Publication, NJ, USA, 2 nd edition 2011.									
2. Anil. K. Jain, 'Fundamentals of Digital Image Processing', Pearson education, Indian Reprint 2003.									
Reference(s): John L.Semmlow, Biosignal and Biomedical Image Processing Matlab Based applications', Marcel Dekke Inc., New York, 2004								Dekker	
2. Kavyan Najarian and Robert Splerstor, 'Biomedical signals and Image processing', CRC – Taylor and France New York, 2006								ancis,	
3. R.C.Gonzalez and R.E.Woods, 'Digital Image Processing', Second Edition, Pearson Education, 2002.									

S.No	Topic	No.of Hours	Mode of content Delivery
1	IMAGE FUNDAMENTALS		
1.1	Image perception	1	BB
1.2	MTF of the visual system	1	BB
1.3	Image fidelity criteria	1	BB
1.4	Image model	1	PPT
1.5	Image sampling and quantization	1	PPT
1.6	Two dimensional sampling theory	1	FC
1.7	Image quantization, Optimum mean square quantizer	1	PPT
1.8	Image transforms – DFT, DCT	1	PPT/SL
1.9	KLT,SVD	1	BB
2	IMAGE ENHANCEMENT AND RESTORATION		
2.1	Histogram equalization and specification techniques	1	FC
2.2	Noise distributions,	1	PPT
2.3	Spatial averaging, Directional Smoothing,	1	PPT
2.4	Median, Geometric mean, Harmonic mean,	1	FC
2.5	Contra harmonic mean filters, Homomorphic filtering	1	SL
2.6	Color image enhancement	1	PPT
2.7	Image Restoration - degradation model,	1	PPT
2.8	Unconstrained and constrained restoration	1	PPT
2.9	Inverse filtering- Wiener filtering	1	PPT
3	MEDICAL IMAGE REPRESENTATION		
3.1	Pixels and voxels – algebraic image	2	PPT
3.2	Operations - gray scale and color representation	1	PPT
3.3	Depth-color and look up tables	1	PPT
3.4	Image file formats	1	PPT
3.5	DICOM- other formats	1	SL
3.6	Analyze 7.5 NifTI and Interfile	2	Case
3.7	Image quality and the signal to noise ratio	1	study
4	MEDICAL IMAGE ANALYSIS AND CLASSIFICATION		
4.1	Image segmentation	1	PPT
4.2	Pixel based, edge based, region based segmentation	2	PPT
4.3	Image representation and analysis	1	PPT
4.4	Feature extraction and representation	2	FC
4.5	Statistical, Shape, Texture, feature	1	PPT
4.6	Image classification	1	SL

4.7	Neural Network approaches	1	Seminar
5	IMAGE REGISTRATIONS AND VISUALIZATION		
5.1	Rigid body visualization	2	PPT
5.2	Principal axis registration	1	PPT
5.3	Interactive principal axis registration	1	PPT
5.4	Feature based registration	1	PPT
5.5	Elastic deformation based registration	1	PPT
5.6	lmage visualization – 2D display methods, 3D display methods	1	FC
5.7	virtual reality based interactive visualization	2	SL Solving

1. Mrs.S.S.Thamilselvi - sstamilselvi@ksrct.ac.in

Category L T P Credit
DATA SCIENCE AND ENGINEERING
PE 3 0 0 3

Objective

- To understand the concepts and technologies in data science
- To explore the concepts in statistical inference and exploratory data analysis
- To understand the basic machine learning algorithms
- To explore the effective visualization of given data using visualization tools
- To implement the data science applications

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basics of Data Sciences	Understand
CO2	To know the mathematical foundations needed for data Science and perform Exploratory Data Analysis.	Remember, Understand
CO3	Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic Regression, decision trees, neural networks and clustering.	Apply
CO4	Create effective visualization of given data	Apply
CO5	Build data science applications	Apply

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3		3			
CO2	3	3	3		3			
CO3	3	3	3		3			
CO4	3	3	3		3			
CO5	3	3	3		3			

Cognitive	Continuous As	sessment Tests	End Semester Examination				
Levels	1	2	(Marks)				
Remember	10	10	20				
Understand	10	10	20				
Apply	40	40	60				
Analyse	-	-	-				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

K. S. Rangasamy College of Technology – Autonomous R2022									
60 PVL E33-DATA SCIENCE AND ENGINEERING									
		House / \A/s		.SI DESIGN	Cradit	1	Maximaruma Ma	el co	
	-	Hours / We	P		Credit C	CA	Maximum Ma │ ES	Total	
Semest	er –	·		Total hrs				100	
III 3 0 0 45 3 40 60 Introduction to core concepts and technologies: Introduction, Terminology, Data-Properties of Data,									
Types of data, Why Data Science? Computer Science, Data Science, and Real Science, data science process, Data Acquisition and Data Science Life Cycle, Ethics in Data Science, data science toolkit, Example applications. Data wrangling: Sources of data, Data collection and API, Working with data: Reading Files, Cleaning Data.									
Statistical Inference, Exploratory Data Analysis: Statistical thinking in Data Science, Statistical Inference, Statistical Analysis, Modeling, Exploratory data analysis and data visualization, Missing value analysis, The correction matrix, Outlier detection analysis.									
Basic Machine Learning Algorithms: Brief introduction, Linear / Polynomial Regression, Logistic Regression, Classification, Regularization, Support vector machines, Extreme learning machines, Naive Bayes, Cross Validation, Label Encoding, Random Forests, Decision Trees, Clustering, Dimensionality reduction, Manifold learning, 2D/3D Convolution, Introduction to Neural Networks, Evaluation Metrics.								ve ity [10]	
ideas and Filtering \ Remote [ualization: Introd I tools for basic of Visualization Prir Database connection of a complex	data visuali nciples. Dat ctivity, Crea	zation tools a visualizat iting charts,	(plots, graphs ion Tool: Rand	and summa om Sample	ıry)-Data Extr Generation ι	action and Ising Tableau	[10]	
1	ons of Data Sc Vorld Data Sets, ob.						-	[8]	
							Total Hou	rs 45	
Text Boo	k(s):								
1. Cat	hy O'Neil, Rach	el Schutt, D	oing Data S	Science, Straig	ht Talk from	The Frontlin	e. O'Reilly, 20	13	
2. Joe	l Grus, "Data Sc	ience from	Scratch: Fi	rst Principles w	vith Python",	O'Reilly Med	dia		
Reference	e(s):								
1. Jure Leskovek, Anand Rajaraman, Jeffrey Ullman, Mining of Massive Datasets. v2.1, Cambridge University Press, 2014.								ge	
2. Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, Techniques to Build Intelligent Systems", 1st Edition, O'Reilly Media								ools, and	
3. Jiawei Han and Jian Pei, "Data Mining Concepts and Techniques", Third Edition, Morgan Kaufmar Publishers								mann	
4. Jai	n V.K., "Data Sc	iences", Kh	nanna Publi	shing House, [Delhi.				
5. https://onlinecourses.nptel.ac.in/noc21_cs23/									

Module No.	Topic	No. of Hours
1	Introduction to core concepts and technologies	1
1.1	Introduction, Terminology, Data-Properties of Data, Types of data	1
1.2	Why Data Science? Computer Science, Data Science, and Real Science, data science process	1
1.3	Data Acquisition and Data Science Life Cycle	1
1.4	Ethics in Data Science, data science toolkit, Example applications.	2
1.5	Data wrangling: Sources of data	1
1.6	Data collection and API	1
1.7	Working with data: Reading Files, Cleaning Data.	1
2	Statistical Inference, Exploratory Data Analysis:	
2.1	Statistical thinking in Data Science	1
2.2	Statistical Inference, Statistical Analysis, Modeling	2
2.3	Exploratory Data Analysis & Data visualization	2
2.4	Missing value analysis	2
2.5	The correction matrix, Outlier detection analysis	2
3	Basic Machine Learning Algorithms	
3.1	Brief introduction, Linear / Polynomial Regression, Logistic Regression	1
3.2	Classification, Regularization	1
3.3	Support vector machines, Extreme Learning Machnies, Naive Bayes	2
3.4	Cross Validation, Label Encoding	1
3.5	Random Forests, Decision Trees	1
3.6	Clustering, Dimensionality reduction	1
3.7	Manifold learning, 2D/3D Convolution	1
3.8	Introduction to Neural Networks	1
3.9	Evaluation Metrics.	1
4	Data visualization	
4.1	Introduction, Types of data visualization, Data Visualization	1
4.2	Basic principles, ideas and tools for basic data visualization tools (plots, graphs and summary statistics)-	2
4.3	Data Extraction and Filtering, Data Visualization Principles.	2
4.4	Data visualization Tool: Random Sample Generation using Tableau, Remote Database connectivity	2
4.5	Creating charts	1
4.6	Mapping data in Tableau	1
4.7	create your own visualization of a complex dataset	1
5	Applications of Data Science:	
5.1	Case Studies of Data Science Application	2
5.2	Recommended Systems on Real World Data Sets	1
5.3	Weather forecasting	1
5.4	Stock market prediction	2
5.5	Object recognition	1
5.6	Matching Skills to Job	1
	Total Hours	45

Course Designers

1. K.Gogila Devi - gogiladevi@ksrct.ac.in

60 PVL E34	ASIC Design	Category	L	Т	Р	Credit	
	/ tolo boolg.	PE	3	0	0	3	1

Objective

- To know on the types of ASIC design and ASIC library design
- To introduces the principles of design logic cells, I/O Cells and Interconnect architecture
- To analyse various programmable ASIC architecture with logic cells, I/O Cells and Interconnect architecture
- To analyse high performance algorithms for floor planning and placement and routing of cells in ASIC design
- To deal with the entire FPGA and ASIC design flow from the circuit and layout design point of view

Prerequisite

Analog and Digital CMOS VLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply logical effort technique for predicting delay, delay minimization and FPGA architectures	Apply
CO2	Design logic cells and I/O cells	Apply
СОЗ	Analyze the various resources of recent FPGAs	Analyze
CO4	Use algorithms for floor planning and placement of cells, routing for optimization of power and speed and understand the concept of layout static time analyses	Apply
CO5	Analyze high performance algorithms available for ASICs	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1						3
CO2				2		3
CO3	3	2	3	2	3	3
CO4	3	2	3	3	2	3
CO5	2			3		3

Bloom's Category		Assessment Tests Marks)	Model Exam	End Sem Examination (Marks)	
	1 2		(Marks)		
Remember (Re)	10	10	10	10	
Understand (Un)	35	35	60	60	
Apply (Ap)	10	10	20	20	
Analyse (An)	5	5	10	10	
Evalute (Ev)	-	-	-	-	
Create (Cr)	-	-	-	-	

Total	60	60	100	100

		K.S.	Rangasamy	College of	Technology	– Autonom	ous R 2022	2		
				60 PVL E	34-ASIC De	sign				
				M.E-	VLSI Desigr	1				
San	nester		Hours / Wee		Total	l Credit		ximum Mark	S	
		L	Т	Р	Hours	С	CA	ES	То	otal
	III	3	0	0	45	3	40	60	10	00
			C'S, CMOS L							
		-	low - CMOS			_	•		ا - ا	[9]
Data I	Path Log	ic Cell - Tra	nsistors as R	esistors - Tr	ansistor Par	asitic Capac	itance- Logi	cal Effort.		[0]
			'S, PROGRA	MMABLE A	SIC LOGIC	CELLS ANI) PROGRAI	MMABLE		
	I/O CEL									[9]
			PROM and E						X '	L-1
			Inputs and O	•	ck & Power I	nputs - Xilin	k I/O Blocks.	•		
			ARCHITECT							
		_	ation of ARTI	_			/ STRATIX	FPGA – Micr	o-	[9]
			edded Systen			•				
LOGI		NTHESIS,			ANALYSIS,	PLACEM				
_	-	-	out STA, Flo	_		-		-		[9]
			nning, Stand			-	nesis, i imin	g Optimizatio	n, '	
		CHIP DESI	nd Detailed F	Routing, , po	st-layout S17	٩.				
			אונ orm-Based a	nd ID Book	ad SaC Day	siana Basia	Concenta	of Buo Book		
	•	•	ıres, High Pe			•	•			[9]
			High Speed [_	Jena-Sigma	Modulators.	Case Studie	S.	
Digita	Camera	a, ODITAIVI, I	ilgii opeed L	zala stanuai	us.			Total hou	re .	45
Text b	book(s):							Total floa		70
1.			cation Specifi	c Integrated	Circuits". Pe	earson, 2003) <u>.</u>			
2.			ed FPGA De							
Refer	ence(s):									
Roger Woods, John Mcallister, Dr. Ying Yi, Gave Lightbod, "FPGA-Based Implementation of Signal										
1.	_		s", Wiley, 200	-	, 0	,	•		J	
2.			ver Design E		tegrated Circ	cuits and Sys	stems)", Spr	inger, 2009.		
David Flynn, Rob Aitken, Alan Gibbons, Kajijan Shi, "Low Power Methodology Manual: For Syste						stem-	_			
3.			egrated Circu				0,	,		
			H.Ning, "Fun				, Cambridge	University P	ress,	,
4.	2016.		J .				•	-	•	

S.No	Торіс	No. of Hours
1	INTRODUCTION TO ASICS, CMOS LOGIC AND ASIC LIBRARY DESIGN	
1.1	Types of Asics	2
1.2	Design Flow - CMOS Transistors	2
1.3	Combinational Logic Cell	1
1.4	Sequential Logic Cell	1

1.5	Data Path Logic Cell	1
1.6	Transistors as Resistors - Transistor Parasitic Capacitance	1
1.7	Logical Effort	1
2	PROGRAMMABLE ASICS, PROGRAMMABLE ASIC LOGIC CELLS AND PROGRAMMABLE ASIC I/O CELLS	
2.1	Anti Fuse - Static Ram - EPROM and EEPROM Technology	2
2.2	ACTEL ACT	1
2.3	Xilinx LCA	1
2.4	ALTERA FLEX	1
2.5	ALTERA MAX	1
2.6	DC & AC Inputs and Outputs	1
2.7	Clock & Power Inputs	1
2.8	Xilinx I/O Blocks	1
3	PROGRAMMABLE ASIC ARCHITECTURE	
3.1	Architecture and Configuration of ARTIX	2
3.2	Cyclone and KINTEX Ultra Scale	2
3.3	STRATIX FPGA	2
3.4	Micro-Blaze / NIOS Based Embedded Systems	2
3.5	Signal Probing Techniques	1
4	LOGIC SYNTHESIS, STATIC TIMING ANALYSIS, PLACEMENT AND ROUTING	
4.1	Logic Synthesis, Pre-Layout STA	1
4.2	Floor Planning Goals and Objectives, Floor Planning Tools	1
4.3	I/O Placement and Power Planning, Standard Cell Placement	2
4.4	Clock Tree Synthesis, Timing Optimization	2
4.5	Routing: Global Routing and Detailed Routing	1
4.6	Post-layout STA	2
5	SYSTEM-ON-CHIP DESIGN	
5.1	SoC Design Flow	1
5.2	Platform-Based and IP Based SoC Designs	2
5.3	Basic Concepts of Bus-Based Communication Architectures	1
5.4	High Performance Filters using Delta-Sigma Modulators	2
5.5	Case Studies: Digital Camera, SDRAM, High Speed Data standards.	3
	Total	45

1. Mrs.C.Saranya – saranyac@ksrct.ac.in

60 PVL E35	MIXED SIGNAL VLSI DESIGN	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To know the types of filters for VLSI circuits.
- To explain the different techniques of ADC for mixed signal circuits.
- To introduce the different techniques of DAC for mixed signal circuits.
- To learn about sigma delta converters for mixed signal circuits.
- To learn the design methodologies and EDA tools for mixed signal VLSI circuits

Prerequisite

Analog and Digital CMOS VLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the concept of different filter for VLSI circuit design	Remember, Understand
		Apply
CO2	Explain the function of continuous time filter in MOS technology for mixed signal circuits	
	signal circuits	Apply
CO3	Apply DAC and ADC techniques for data conversions using CMOS technologies	Apply
CO4	Illustrates the concept of sigma delta converter method for VLSI circuits	Remember, Understand Apply
CO5	Design a complete mixed signal system using EDA tools	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3		3
CO2	3	3	3	3		3
CO3	3	3	3	3	3	3
CO4	3		2	3	2	3
CO5	3	3	3	3	3	3

Assessment Pattern

Bloom's Category		Assessment Tests Marks)	Model Marks	End Sem Examination
	1	2	(100)	(Marks)
Remember (Re)	12	10	20	20
Understand (Un)	38	40	60	60
Apply (Ap)	10	10	20	20
Analyse (An)	-	-	-	-

Passed in BoS Meeting held on 13/05/2023 Approved in Academic Council Meeting held on 03/06/2023

Evalute (Ev)	-	-	-	-
Create (Cr)	-	-	-	-
Total	60	60	100	100

K.S.Rangasamy College of Technology – Autonomous R 2022									
			60 P	VL E35- MIX	(ED SIGNAL	VLSI DESI	GN		
				M.E	-VLSI Desig	gn			
80	mester	ŀ	Hours / We	ek	Total	Credit	M	aximum Mark	s
36	illestei	L	Т	Р	Hours	С	CA	ES	Total
	≡	3	0	0	45	3	40	60	100
1		to Active Fil		-					
	_						-	iers-Switched	[9]
1 .						· ·		arity, noise in	[5]
switched capacitor circuits – Integrator- Biquadratic SC Filter- SC N-path filters.									
		ime Filters							
1			-					using Triode	[9]
1								ng Circuitry -	[-]
						ng block- Firs	st and secon	d order filters.	
_		log & Analo						540 111 11	
						-	_	DAC, Hybrid	
1		-			•		-	log to Digital	[9]
1	-					os: Flash, f	olding ADC	s, Multiple-Bit	
		and SAR Al	DC, time-int	erieaved A/L	converters				-
_		Converters		limaithat w	ملائيين 0 ماما	امما مام	amamiatian i	fti	
1	•		•	•		•		nperfections - DC's- discrete	[8]
1		odulator-bas			uei illouulait	n - sigina de	ila DAC & Ai	JC s- discrete	
		lixed Signal							
	_	_			rv of differer	ntial algebrai	c equations	- the 1076 .1	
1					-	-		A/D and D/A	
_	_	_	-	=			-	extensions to	[10]
1			=	-	_	=	_	g behavior –	
	-	tructures –M	_	-		`	•	J	
								Total hours	45
Text	book(s):								
1.	1. David A Johns and Ken Martin, 'Analog Integrated Circuit Design', John Wiley and Sons, 2016.								
2. Rudy van de Plassche, 'Integrated Analog-to-Digital and Digital-to-Analog Converters', Kluwer, 2014.									
Refe	rence(s):								
1.	Behzad Razavi, 'Design of Analog CMOS Integrated Circuits', 2012								
2. Michael D.Ciletti, 'Advanced Digital Design with the Verilog HDL', 2nd Edition, Pearson Education, 2011						n, 2011			
3.	Antonio	u, 'Digital Filt	ers Analysis	s and Design	i', Tata McGr	aw Hill, 2010	0		
4	Yuan Ta	aur and Tak I	H.Ning, "Fur	ndamentals c	of Modern VL	.SI Devices",	, Cambridge	University Pre	ss,
4.	2016.								

S.No.	Topic	No. of Hours
1	Introduction to Active Filters & Switched Capacitor Filters	
1.1	Switched Capacitor (SC) circuits: Parasitic Insensitive Switched Capacitor amplifiers	2
1.2	Switched capacitor filters and resistors – comparators	2
1.3	CMOS, BiCMOS sample-and-holds	2

1.4	Linearity, noise in switched capacitor circuits	1
1.5	Integrator- Biquadratic SC Filter	1
1.6	SC N-path filters.	1
2	Continuous Time Filters	
2.1	Introduction to Gm - C filters	1
2.2	Bipolar transconductors	1
2.3	CMOS Transconductors using Triode transistors, active transistors	2
2.4	BiCMOS transconductors	1
2.5	MOSFET C Filters - Tuning Circuitry	1
2.6	Dynamic range performance- Elementary transconductor building block	2
2.7	First and second order filters	1
3	Digital to Analog & Analog to Digital Converters	
3.1	Types of DAC's: Current switched, Resistive, Current cell design in current steering DAC	2
3.2	Hybrid converters, segmented converters DAC's	2
3.3	Techniques for improving linearity - Analog to Digital Converters	1
3.4	Quantization errors - non-idealities - types of ADC's: Flash, folding ADC's	2
3.5	Multiple-Bit Pipeline ADCs and SAR ADC, time-interleaved A/D converters	2
4	Sigma Delta Converters	
4.1	Over sampled converters - over sampling without noise & with noise	2
4.2	Implementation imperfections - first order modulator	2
4.3	Decimation filters - second order modulator	1
4.4	Sigma delta DAC & ADC's	2
4.5	Discrete delta sigma modulator-based ADC using MATLAB	1
5	Analog and Mixed Signal Extensions to HDL	
5.1	Introduction - Language design objectives - Theory of differential algebraic equations	1
5.2	The 1076 .1 Language - Tolerance groups	1
5.3	Tolerance groups - Conservative systems - Time and the simulation cycle	2
5.4	A/D and D/A Interaction - Quiescent Point - Frequency domain modeling and examples	2
5.5	Analog extensions to Verilog: Mixed Signal HDL design Flow- data types –Expressions	2
5.6	Signals- Analog behavior –Hierarchical Structures –Mixed signal Interaction	2
	Total	45

1. Ms.R.Ramya – rramya@ksrct.ac.in

60 PVL E41	System Verilog	Category	L	Т	Р	Credit
001 12 241	Gystem vernog	PE	3	0	2	4

- To understand the basic concept of System Verilog for Verification
- To understand advanced verification features used in System Verilog
- To know the threads and inter-process communication and functional coverage
- To apply System Verilog Concepts to do synthesis, analysis and architecture design
- To understand the purpose of hardware-software Verification

Prerequisite

Verilog HDL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Use System Verilog to create correct, efficient, and re-usable models for digital designs	Remember, Understand Apply
CO2	Use System Verilog to create test-benches for digital design	Apply
CO3	Understand the terminology and concept of OOPS in System Verilog for verification	Remember, Understand
CO4	Understand the inter-process communication between modules in System Verilog	Remember, Understand
CO5	Design a complete system model using System Verilog	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3			3		3
CO2	3			3		3
CO3	3			3	3	3
CO4	3			3	2	3
CO5	3	2	3	3	3	3

A33C33IIICIIL I Utti	24.11				
Bloom's Category		ssessment Tests arks)	Model Exam	End Sem Examination	
	1	2	(Marks)	(Marks)	
Remember (Re)	10	10	20	20	
Understand (Un)	40	40	60	60	
Apply (Ap)	10	10	20	20	
Analyse (An)	-	-	-	-	
Evalute (Ev)	-	-	-	-	
Create (Cr)	-	-	-	-	

Total	60	60	100	100

K.S.Rangasamy College of Technology – Autonomous R 2022								
60 PVL E41- System Verilog								
M.E-VLSI Design								
Semester		Hours / We		Total	Credit		ximum Marl	
III	L 3	T 0	P 2	Hours	<u> </u>	CA	ES	Total
VERIFICATIO				60	4	40	60	100
Verification Guidelines: Introduction, Verification Process, Verification Plan, Verification Methodology Manual, Basic Test-bench Functionality, Directed Testing, Methodology Basics, Constrained-Random Stimulus, Functional Coverage, Test-bench Components, Layered Test-bench.								[12]
SYSTEM VER Data Types: B With Typede Procedural S Functions.	uilt-in Data f, Creating	Types, Fixed User-Defin	-Size Arrays ed Structure	es, Enumera	ated Types	, Constant	s, Strings.	[12]
OOPS Introduction-V De-allocation- Routines Outs Dynamic Obje	Using Obide of The	jects -Static Class - Scop	Variables V: ing Rules -U	s. Global Va sing One Cla	ariables -Cla ass Inside A	iss Routine nother - Und	s -Defining derstanding	[12]
THREADS AND INTER-PROCESS COMMUNICATION AND FUNCTIONAL COVERAGE Working With Threads, Inter-Process Communication, Events, Semaphores, Mailboxes, Building a Testbench With Threads and IPC. Coverage Types, Functional Coverage Strategies, Simple Functional Coverage Example, Coverage Options, Parameterized Cover Groups, Analysing Coverage Data, Measuring Coverage Statistics.						[12]		
System Verilo Receivers and	g ATM Exa	ımple, Data A	bstraction, In				evel Squat,	[12]
PRACTICAL EXERCISES: 1. Design a Testbench for 2x1 Mux Using Gates 2. Implementation of a Mailbox By Allocating Memory 3. Implementation and Testing of Semaphore for a Simple DUT 4. Implementation of Scoreboard for a Simple DUT								
			•			T	otal hours	60
Text book(s):								
	Verilog for pringer 200	r Verification 06	: a Guide t	o Learning	The Testbe	ench Langu	age Feature	s, Chris
Writing	Writing Testhenches: Functional Verification of HDI Models, Second Edition, Janick Bergeron, Kluwe						, Kluwer	
Reference(s):								
1. System Verilog for Design: a Guide to Using System Verilog for Hardware Design and Modeling, 2 Edition, Stuart Sutherland, Simon Davidman and Peter Flake, Springer							ng, 2 nd	
Open Verification Methodology Cookbook, Mark Glasser, Springer, 2009								
3 Assertion		esign, 2nd E					vid J. Lacey	, Kluwer
		•	n Desian. 2n	d Edition. Mo	Graw Hill. 2	005.		
4. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.								

S.No	Торіс	No. of Hours
1	UNIT I VERIFICATION METHODOLOGY	
1.1	Verification Guidelines: Introduction	2
1.2	Verification Process, Verification Plan	2
1.3	Verification Methodology Manual	2
1.4	Basic Test-bench Functionality	2
1.5	Directed Testing, Methodology Basics	2
1.6	Constrained-Random Stimulus, Functional Coverage	1
1.7	Test-bench Components, Layered Test-bench	1
2	UNIT II SYSTEM VERILOG BASICS AND CONCEPTS	
2.1	Data Types: Built-in Data Types, Fixed-Size Arrays	2
2.2	Dynamic Arrays, Queues	2
2.3	Creating New Types With Typedef	2
2.4	Creating User-Defined Structures	1
2.5	Enumerated Types, Constants, Strings	1
2.6	Procedural Statements and Routines: Procedural Statements	2
2.7	Tasks, Functions, and Void Functions	2
3	UNIT III OOPS	
3.1	Introduction-Where to Define a Class	2
3.2	OOPS Terminology	2
3.3	Creating New Objects -Object De-allocation- Using Objects	2
3.4	Static Variables Vs. Global Variables -Class Routines	1
3.5	Defining Routines Outside of The Class	1
3.6	Scoping Rules -Using One Class Inside Another	1
3.7	Understanding Dynamic Objects -Copying Objects	1
3.8	Public Vs. Private -Straying Off Course	1
3.9	Building a Testbench	1
4	UNIT IV THREADS AND INTER-PROCESS COMMUNICATION AND FUNCTIONAL COV	ERAGE
4.1	Working With Threads	1
4.2	Inter-Process Communication	1
4.3	Events, Semaphores, Mailboxes	1
4.4	Building a Testbench With Threads and IPC	1
4.5	Coverage Types, Functional Coverage Strategies	2

4.6	Simple Functional Coverage Example, Coverage Options	2
4.7	Parameterized Cover Groups	2
4.8	Analysing Coverage Data, Measuring Coverage Statistics	2
5	UNIT V COMPLETE DESIGN MODEL USING SYSTEM VERILOG- CASE STUDY	
5.1	System Verilog ATM Example	2
5.2	Data Abstraction	2
5.3	Interface Encapsulation	2
5.4	Design Top Level Squat	2
5.5	Receivers and Transmitters	2
5.6	Test Bench for ATM	2
	Total	60

1. Mrs.C.Saranya – saranyac@ksrct.ac.in

60 PVL E42	HDI for IC Design	Category	L	Т	Р	Credit
60 PVL E42	HDL for IC Design	PE	3	0	2	4

- To understand the basics of Verilog HDL
- · To design digital systems using the different modeling
- To understand the HDL synthesis
- To learn verification process
- To test the design using testbench

Prerequisite

Digital System Design, Verilog HDL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply digital design concepts and write Verilog programs	Remember, Understand, Apply
CO2	Write Verilog programs using dataflow and behavioral modeling	Apply, Create
CO3	Synthesis the digital design for implementation in FPGA	Understand, Apply
CO4	Understand the principles of verification process and System Verilog	Apply, Analyze
CO5	Interface testbench and design under test	Apply, Analyze

Mapping with Programme Outcomes

PO1	PO2	PO3	PO4	PO5	PO6
3	3	3	3	3	3
3	3	3	3	3	3
3	3	3	3	3	3
3	3	3	3	3	3
3	3	3	3	3	3

Bloom's Category		Assessment Tests Marks)	End Sem Examination
	1	2	(Marks)
Knowledge (Kn)	20	20	30
Apply (Ap)	20	20	30
Analyse (An)	10	10	20
Evaluate(Ev)	0	0	0
Create (Cr)	10	10	20

Total	60	60	100

		K	.S. Rangasa	my College	of Technolo	ogy – Autono	mous R 20	18	
					- HDL for IC				
					VLSI Desig				
Semester	mester		Hours / Wee		Total	Credit		ximum Mar	
		L	T	Р	Hours	С	CA	ES	Total
1.4	<u> </u>	3	0	2	60	4	40	60	100
Over Modu	view of di ules-Veril	og Ports, D		d Assignmer		ing concepts- el modeling-S			[12]
Dataflow and behavioral modeling Basics of dataflow modeling-Review of flip-flops-Verilog modeling of flip-flops-Basics of behavioral modeling-Verilog modeling of counters, sequence detector, FSMs and shift registers. Verilog HDL Synthesis							[12]		
Synth	nesis Des	ign Flow-Ve				eling for logio		Example of	[12]
Introduction to System Verilog Verification Process- Basic Testbench Functionality - Directed Testing - Constrained-Random Stimulus, Functional Coverage, Testbench Components- Layered Testbench- Building a Layered Testbench- Simulation Environment Phases - Data types and procedural statements: Built-In Data Types- Fixed-Size Arrays- Dynamic Arrays- Queues- Associative Arrays- Array Methods- Choosing a Storage Type- Creating New Types with typedef- Creating User-Defined Structures- Type conversion- Enumerated Types- Task and Function Overview- Routine Arguments- Returning from a Routine.						[12]			
Sepa and S	rating the Sampling	e Test benc -Connecting	ı It All Togeth	n-The Interfa er-Top-Leve		t-Stimulus Ti gram - Modul			[12]
Verilog Assertions-The Four-Port ATM Router. PRACTICAL EXERCISES: 1. Simulate the Combinational circuits using different modeling 2. Design and implement FSM 3. Design and implement FIR and IIR filter 4. Verify the digital systems using system verilog									
							To	otal hours	60
Text book(s): Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2 nd Edition, Pearson Education New Delhi, 2019									
Chris Spear, "System Verilog for Verification: A Guide to Learning the Test bench Language Features", 2 nd Edition, Springer, 2012.									
Refe	rence(s):								
1			- Massachus	etts Institute	of Technolo	gy Open Cou	rseware.		
2	Michael	D Ciletti - A	dvanced Dig	ital Design w	vith the Verilo	og HDL, 2 nd E	dition, PHI,	2009	
3	Stepher 2008	Brown and	l Zvonko Vrai	nesic - Funda	amentals of	Digital Logic	with Verilog,	2 nd Edition,	ТМН,

S.No	Topic	No. of Hours
1	Introduction to Verilog	•
1.1	Overview of digital design using Verilog HDL	2
1.2	Hierarchical Modeling concepts	2
1.3	Verilog Operators and Modules	2
1.4	Verilog Ports, Data types and Assignments	1
1.5	Gate level modelling	1
1.6	Switch level modelling	1
1.7	Modelling of CMOS gates	1
1.8	Boolean functions	2
2	Dataflow and behavioral modelling	•
2.1	Basics of dataflow modelling	2
2.2	Review of flip-flops	2
2.3	Verilog modeling of flip-flops	2
2.4	Basics of behavioral modelling	1
2.5	Verilog modeling of counters	1
2.6	Sequence Detector	1
2.7	Finite State Machine (FSM)	2
2.8	Shift Registers	1
3	Verilog HDL Synthesis	
3.1	Synthesis Design Flow	2
3.2	Verification of the gate level net list	4
3.3	Modeling for logic synthesis	4
3.4	Example of sequential circuit synthesis	2
3.5	FIR filter implementation-IIR filter implementation	2
4	Introduction to System Verilog	
4.1	Verification Process- Basic Testbench Functionality	1
4.2	Directed Testing - Constrained-Random Stimulus	2
4.3	Functional Coverage, Testbench Components	1
4.4	Layered Testbench- Building a Layered Testbench	2
4.5	Simulation Environment Phases	2
4.6	Data types and procedural statements: Built-In Data Types	1
4.7	Fixed-Size Arrays- Dynamic Arrays- Queues- Associative Arrays	1
4.8	Array Methods- Choosing a Storage Type- Creating New Types with typedef- Creating User-Defined Structures- Type conversion	1
4.9	Enumerated Types- Task and Function Overview- Routine Arguments- Returning from a Routine	1
5	Connecting the Test bench and Design	1
5.1	Separating the Test bench and Design	2
5.2	The Interface Construct	2
5.3	Stimulus Timing	2
5.4	Interface Driving	1
5.5	Sampling-Connecting It All Together	1

5.6	Top-Level Scope-Program	1
5.7	Module Interactions	1
5.8	System Verilog Assertions	1
5.9	The Four-Port ATM Router	1
	Total	60

1. Mr.S.Saravanan – saravanan.s@ksrct.ac.in

60 PVL E43	Deep Learning	Category	L	Т	Р	Credit
00 FVL E43	Deep Learning	PE	3	0	2	4

The aim of the course is

- To present the mathematical, statistical and computational challenges of building neural Networks,
- To study the concepts of back propagation & optimization algorithms,
- To introduce dimensionality reduction techniques,
- · To study different deep neural networks and
- To study the optimization of deep networks

Prerequisite

Machine Learning Techniques

CourseOutcomes

On the successful completion of the course, students will be able to

CO1	Learn the basics of deep learning	Remember, Understand
CO2	Implement ANN using back propagation algorithm	Apply
CO3	Analyze high dimensional data using reduction techniques	Apply, Analyse
CO4	Explain the architecture of different CNNs	Understand
CO5	Study optimization and generalization in deep learning	Remember, Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		2	
CO2	3		3	2	3	
CO3	3		3	2	3	
CO4	3		3	2	3	
CO5	3		3	2	3	

Bloom's Category	Continuo	ous Assessment Tests (Marks)	End Sem Examination
Bloom's category	1	2	(Marks)
Remember	10	10	30
Understand	20	20	30
Apply	30	25	30
Analyse	0	5	10
Evaluate	0	0	0
Create	0	0	0
Total	60	60	100

Semester Hours / Week Total Credit Maximum Marks	K.S. Rangasamy College of Technology – Autonomous R 2018								
Hours / Week									
III 3 0 2 60 4 40 60 100									
III 3 0 2 60 4 40 60 100 Introduction Introduction to machine learning - Perceptrons, logistic regression - Introduction to Neural Nets: What a shallow network computes - Training a network: loss functions, back propagation and gradient descent - representation power of Feed forward Neural Networks [12] Practical: Implementation of Logistic Regression using sklearn Backpropagation and optimization algorithms Back propagation and regularization, Gradient Descent (GD), Momentum based GD, Nestero Accelerated GD, Stochastic GD, Adagrad, RMSProp, Adam, Eigen values and Eigen vectors. [12] Practical: Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets. [12]	Semester								
Introduction Introduction to machine learning - Perceptrons, logistic regression - Introduction to Neural Nets: Introduction to machine learning - Perceptrons, logistic regression - Introduction to Neural Nets: What a shallow network computes - Training a network: loss functions, back propagation and gradient descent - representation power of Feed forward Neural Networks Introduction of Logistic Regression using sklearn Backpropagation and optimization algorithms Back propagation and optimization of Logistic Regression using sklearn Back propagation and regularization, Gradient Descent (GD), Momentum based GD, Nestero Accelerated GD, Stochastic GD, Adagrad, RMSProp, Adam, Eigen values and Eigen vectors. Introduction Introducti		L							
Introduction to machine learning - Perceptrons, logistic regression - Introduction to Neural Nets: What a shallow network computes - Training a network: loss functions, back propagation and gradient descent - representation power of Feed forward Neural Networks Practical: Implementation of Logistic Regression using sklearn Backpropagation and optimization algorithms Back propagation and regularization, Gradient Descent (GD), Momentum based GD, Nestero Accelerated GD, Stochastic GD, Adagrad, RMSProp, Adam, Eigen values and Eigen vectors. Practical: Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets. Dimentionality Reduction Principal Component Analysis and its interpretations, Singular value decomposition - Auto encoders and relation to PCA, Regularization in auto encoders, Denoising auto encoders, Sparse auto encoders, and Contractive auto encoders, Regularization, Data set augmentation, dropout. Practical: Study the effect of batch normalization and dropout in neural network classifier Convolution Neural Networks: Architectures — AlexNet, VGGNet, SegNet, ResNet - Training a: weights initialization, batch normalization, Deep dream, Deep Art, Fooling Convolution neural network Practical: Image segmentation using ResNet / SegNet Optimization and Generalization Optimization in deep learning — Non-convex optimization for deep networks - Stochastic Optimization - Generalization in neural networks - Spatial Transformer Networks - Recurrent networks, LSTM - Recurrent Neural Network Language Models. Practical: Write a program to construct a Bayesian network considering medical data. Total hours Total hours Total hours 1 Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013 2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): 1 Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2 Cosma Rohilla Shalizi, Advanced Data Analysis from an Elem		3	U		60	4	40	60	100
Back propagation and regularization, Gradient Descent (GD), Momentum based GD, Nestero Accelerated GD, Stochastic GD, Adagrad, RMSProp, Adam, Eigen values and Eigen vectors. Practical: Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets. Dimentionality Reduction Principal Component Analysis and its interpretations, Singular value decomposition - Auto encoders and relation to PCA, Regularization in auto encoders, Denoising auto encoders, Sparse auto encoders, and Contractive auto encoders, Regularization, Data set augmentation, dropout. Practical: Study the effect of batch normalization and dropout in neural network classifier Convolution Neural Networks: Architectures — AlexNet, VGGNet, SegNet, ResNet - Training a: weights initialization, batch normalization, Deep dream, Deep Art, Fooling Convolution neural network Practical: Image segmentation using ResNet / SegNet Optimization and Generalization Optimization in deep learning — Non-convex optimization for deep networks - Stochastic Optimization- Generalization in neural networks - Spatial Transformer Networks- Recurrent Pentworks, LSTM - Recurrent Neural Network Language Models. Practical: Write a program to construct a Bayesian network considering medical data. Total hours 60 Text book(s): 1 Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013 2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): 1 Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2 Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015	Introduction to machine learning - Perceptrons, logistic regression - Introduction to Neural Nets: What a shallow network computes - Training a network: loss functions, back propagation and gradient descent – representation power of Feed forward Neural Networks								[12]
Principal Component Analysis and its interpretations, Singular value decomposition - Auto encoders and relation to PCA, Regularization in auto encoders, Denoising auto encoders, Sparse auto encoders, and Contractive auto encoders, Regularization, Data set augmentation, dropout. Practical: Study the effect of batch normalization and dropout in neural network classifier Convolution Neural Networks: Architectures – AlexNet, VGGNet, SegNet, ResNet - Training a: weights initialization, batch normalization, Deep dream, Deep Art, Fooling Convolution neural network Practical: Image segmentation using ResNet / SegNet Optimization and Generalization Optimization in deep learning – Non-convex optimization for deep networks - Stochastic Optimization- Generalization in neural networks - Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models. Practical: Write a program to construct a Bayesian network considering medical data. Total hours 60 Text book(s): 1 Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013 2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015	Back propaga Accelerated G Practical: E algorithm and	ation and re D, Stochast Build an A d test the s	egularization, tic GD, Adagı artificial Neu ame using a	Gradient D ad, RMSPro Iral Networ	p, Adam, Ei k by impl e	gen values a	and Eigen ve	ctors	[12]
Architectures – AlexNet, VGGNet, SegNet, ResNet - Training a: weights initialization, batch normalization, Deep dream, Deep Art, Fooling Convolution neural network Practical: Image segmentation using ResNet / SegNet Optimization and Generalization Optimization in deep learning – Non-convex optimization for deep networks - Stochastic Optimization- Generalization in neural networks - Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models. Practical: Write a program to construct a Bayesian network considering medical data. Total hours 60 Text book(s): 1 Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013 2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015	Principal Com and relation t encoders, and	ponent Anal to PCA, Re I Contractive	lysis and its ir gularization e auto encode	in auto enc ers, Regulari	oders, Deno zation, Data	oising auto e set augmen	encoders, S itation, dropo	parse auto out.	[12]
Optimization in deep learning – Non-convex optimization for deep networks - Stochastic Optimization- Generalization in neural networks - Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models. Practical: Write a program to construct a Bayesian network considering medical data. Total hours 60 Text book(s): 1 Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013 2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015	Architectures normalization, Practical: Ima	Architectures – AlexNet, VGGNet, SegNet, ResNet - Training a: weights initialization, batch normalization, Deep dream, Deep Art, Fooling Convolution neural network					[12]		
Text book(s): 1 Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013 2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015 Erangoic Challet, "Deep Journing with Puthon", Mapping Publications	Optimization in deep learning — Non-convex optimization for deep networks - Stochastic Optimization- Generalization in neural networks - Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models.					[12]			
Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015 Francis Challet, "Deep Journing with Puthon", Manning Publications							T	otal hours	60
2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016 Reference(s): 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015 Erangoic Challet, "Deep Journing with Pathon", Manning Publications									
Reference(s): 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 2. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015 Francia Challet, "Deep Journing with Pathon", Mapping Publications	1 Deng &	Yu, Deep L	earning: Meth	nods and Ap	plications, N	ow Publishe	rs, 2013		
Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015 Erangoic Challet, "Deep Journing with Pathon", Manning Publications.	2 Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016								
Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015 Erangoic Challet, "Deep Journing with Pathon", Manning Publications.	Reference(s):	<u> </u>							
Erangois Challet "Doop Joarning with Dython" Manning Bublications	Michael		eural Network	s and Deep	Learning, D	etermination	Press, 2015		
3. Francois Chollet, "Deep learning with Python" – Manning Publications	2. Cosma	Rohilla Shal	izi, Advanced	d Data Analy	sis from an l	Elementary F	Point of View	, 2015	
	3. Francois	s Chollet, "D	eep learning	with Python	" – Manning	Publications	<u> </u>		

S.No	Topic	No.of Hours
1	Introduction	
1.1	Introduction to machine learning	1
1.2	Perceptrons	1
1.3	Logistic regression	2
1.4	Introduction to Neural Nets: What a shallow network computes?	2
1.5	Training a network: loss functions,	2
1.6	Back propagation and gradient descent	2
1.7	Representation power of Feed forward Neural Networks	2
2	Backpropagation and optimization algorithms	
2.1	Back propagation and regularization	2
2.2	Gradient Descent (GD),	2
2.3	Momentum based GD	2
2.4	Nestero Accelerated GD	1
2.5	Stochastic GD	1
2.6	Adagrad	1
2.7	RMSProp	1
2.8	Adam	1
2.9	Eigen values and Eigen vectors.	1
3	Dimentionality Reduction	
3.1	Principal Component Analysis and its interpretations	1
3.2	Singular value decomposition	1
3.3	Auto encoders and relation to PCA	1
3.4	Regularization in auto encoders	2
3.5	Denoising auto encoders	2
3.6	Sparse auto encoders,	2
3.7	Contractive auto encoders	2
3.8	Regularization, Data set augmentation	1
3.9	Dropout	1
4	Convolution Neural Networks :	
4.1	Architectures – AlexNet	2
4.2	VGGNet	2
4.3	SegNet	2
4.4	ResNet	2
4.5	Training a: weights initialization, batch normalization	1
4.6	Deep dream	1
4.7	Deep Art	1
4.8	Fooling Convolution neural network	1

5	Optimization and Generalization	
5.1	Optimization in deep learning	2
5.2	Non-convex optimization for deep networks	2
5.3	Stochastic Optimization	2
5.4	Generalization in neural networks	2
5.5	Spatial Transformer Networks	1
5.6	Recurrent networks	1
5.7	LSTM	1
5.8	Recurrent Neural Network Language Models	1

1. Mrs.S.S.Thamilselvi - sstamilselvi@ksrct.ac.in

60 PVL E44	ADAPTIVE SIGNAL PROCESSING

Category	L	Т	Р	Credit
PE	3	0	2	4

- To understand the concepts of stationary and non-stationary random signals and characterization of discrete-time random processes.
- To explain Non parametric and parametric methods for power spectrum estimation.
- To design optimum filters such as Wiener and Kalman filters.
- To design adaptive filtering techniques using LMS and RLS algorithm and understand the applications of adaptive filters.
- To learn the concepts of Continuous Wavelet Transform and its applications.

Prerequisite

Digital Signal Processing

Course Outcomes

On the successful completion of the course, students will be able to

	·	
CO1	Explain the mathematical description and signal modelling of discrete time random processes.	Remember, Understand, Apply
CO2	Apply various techniques for estimating the power spectrum of a stationary random Process.	Remember, Understand, Apply
CO3	Design different optimum filters	Analyse
CO4	1.5	Understand, Analyse
CO5	Discuss the concepts of CWT and its applications.	Remember, Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3		3	3		
CO2	3	3			3	3	
CO3	3	3	3	3	3	3	
CO4	3	3	3	3	3	3	
CO5	3	3			3		
3- Strong;2-Medium;1-Some							

Plaam's Catagory	Continuous Asse	End Sem Examination	
Bloom's Category	1 2		(Marks)
Remember(Re)	20	10	10
Understand(Un)	20	20	40
Apply (Ap)	20	20	40
Analyse (An)	0	10	10
Evalute(Ev)	0	0	0

Create (Cr)	0	0	0

K.S.Rangasamy College of Technology – Autonomous R 2022										
			6	60 PVL E44		Signal Proce	ssing			
M.E-VLSI Design										
Son	nester		Hours / Weel		Total	Credit		Maximum	Marks	
361		L	T	Р	Hours	С	CA	ES	Tota	
	III	3	0	2	60	4	40	60	100	
Discrete time random signals Discrete random processes-Definitions-Ensemble Averages-Stationary processes- Auto covariance and Autocorrelation matrices-Properties- Ergodicity- White noise- Weiner Khitchine relation- Power spectral density –Filtering random processes- Spectral Factorization Theorem- Special types of random processes – ARMA, AR, MA Processes-Pade approximation – Prony's method.								[12]		
Pract	i cal : Po	wer spectra	ıl density usin	g square m	agnitude an	d autocorrela	ation metho	d.		
Non- Barlet metho Devel	tt'smetho ods - AR lopment (ric method d, Welch's l, MA, ARM of the Recur	s: Periodogr method and IA spectrum rsion-The Levi	l Blackmar estimation inson recurs	n-Tukey Appusing YuleW Sion algorithr	oroach- Perfo Valker metho m for solving	ormance co od- The Lev Toeplitz sys	omparisons /inson-Durbin stem of equat	-Parametric recursion-	[12]
			OD OI a HOISY	signal using	g periodogra	in and modil	ied periodo(grain.		
Optimum Filters Linear Minimum Mean-Square Error (LMMSE) Filtering: Wiener Hopf Equation, FIR Wiener filter-Filtering, Linear Prediction- IIR Wiener filter-Causal and Non causal IIR Wiener filter-Discrete Kalman filter.							[12]			
			optimum filters	<u>s</u>						
Adaptive Filters FIR Adaptive filters - Newton's steepest descent method - Widrow-Hoff LMS Adaptive algorithm - Normalized LMS algorithm- Applications - Noise cancellation - Channel equalization — Echo cancellation- Adaptive Recursive Filters - RLS adaptive algorithm Practical Lab:Adaptive Filter for noise cancellation in Sinusoidal signal and System Identification using Adaptive filter							[12]			
Continuous Wavelet transform Wavelet basis— STFT- Continuous time Wavelet Transform (CWT)— Principles of Multi-Resolution Analysis (MRA) - Construction of Wavelets-Construction of Orthonormal Wavelets-Applications of wavelet transform - noise reduction, image compression. Practical: Time-Frequency Analysis with the Continuous Wavelet Transform and Signal Reconstruction from Continuous Wavelet Transform Coefficients.						[12]				
								Т	otal hours	60
	book(s): Monso	ı H. Haves	'Statistical Di	gital Signal	Processing a	and Modeling	ı'. John Wile	ev and Sons I	nc New Yo	rk.
1.	2008.	•					•	•		
2.	John W	/iley &	ni and Andrew Sons, Inc., Sir	,		s of vvavelets	s— i neory, A	and and and and	a Application	S',
Refer	ence(s):			-	-		-			
1.		Oppenheim	ı, Ronald W S	chafer, 'Dis	crete Time S	Signal Proces	sing', Pears	son Education	n India, 3 rd Ed	dition,
2014. John G. Proakis, Dimitris G. Manolakis, 'Digital Signal Processing: Principles, Algorithms and Applications'										
2.	Pearso	Pearson Education, 4 th Edition,2014.							,	
2. 3.				014.			mcipies, Aig	gonumis and	Applications	,

S.No	Topic	No.of Hours			
1	Discrete time random signals				
1.1	Discrete random processes Definitions, Ensemble Averages, Stationary processes	2			
1.2	Auto covariance and Autocorrelation matrices-Properties Ergodicity	2			
1.3	White noise Weiner Khitchine relation Power spectral density	2			
1.4	Filtering random processes: Spectral Factorization Theorem	2			
1.5	Special types of random processes: ARMA, AR, MA Processes	2			
1.6	Pade approximation	1			
1.7	Prony's method.	1			
2	Spectrum Estimation				
2.1	Non-Parametric methods: Periodogram Performance of the Periodogram	2			
2.2	Modified periodogram Barlett'smethod				
2.3	Welch's method and Blackman-Tukey Approach Performance comparisons				
2.4	Parametric methods : AR, MA, ARMA spectrum estimation using Yule Walker method-	2			
2.5	The Levinson-Durbin recursion- Development of the Recursion.	2			
2.6	The Levinson recursion algorithm for solving Toeplitz system of equations.	2			
3	Optimum Filters	·			
3.1	(LMMSE) Filtering: Wiener Hopf Equation	2			
3.2	FIR Wiener filter	2			
3.3	Filtering & Linear Prediction	2			
3.4	IIR Wiener filter-Causal IIR Wiener filter	2			
3.5	Non causal IIR Wiener filter	2			
3.6	Discrete Kalman filter.	2			
4	Adaptive Filters	•			
4.1	FIR Adaptive filters - Newton's steepest descent method	2			
4.2	Widrow-Hoff LMS Adaptive algorithm	2			
4.3	Normalized LMS algorithm	2			
4.4	Noise cancellation, Channel equalization, Echo cancellation-	4			
4.5	Adaptive Recursive Filters : RLS adaptive algorithm	2			
5	Continuous Wavelet transform	<u> </u>			
5.1	Wavelet basis STFT	2			
5.2	Continuous time Wavelet Transform (CWT)	2			
5.3	Principles of Multi-Resolution Analysis (MRA)	2			

	Total	60
5.6	Applications of wavelet transform : noise reduction, image compression.	2
5.5	Construction of Orthonormal Wavelets	1
5.4	Construction of Wavelets	1

- 1. Dr.P.Babu-pbabu@ksrct.ac.in
- 2. Ms.C.Saraswathy saraswathy@lsrct.ac.in

60 PVL E45	MEMS system design	Category	L	Т	Р	Credit
		PE	3	0	2	4

- To introduce and provide a broad view of MEMS and micro systems.
- To familiarize with the fundamentals of MEMS products, materials for microsystems
- To learn the microsystem fabrication process
- To learn the various MEMS-specific design issues and constraints will be discussed in detail
- To know the applications of micro sensors and micro actuators

Prerequisite

Electronic Circuits

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the basic principles of MEMS sensors and actuators.	Remember
001	Know the basic philopies of MEMO sensors and actuators.	Understand
CO2	Outline the various materials used for MEMS products.	Understand
CO2	Outline the various materials used for MEMS products.	Analyze
CO2	Eamiliarize with the fabrication process of MEMC devices	Remember,
CO3	Familiarize with the fabrication process of MEMS devices.	Analyze
CO4	Analyze the design process in mems systems.	Analyze
	, , ,	,
CO5	Know the diverse applications of MEMS sensors	Remember,
	Trion the arrenee applications of MEMO serious	Understand

Mapping with Programme Outcomes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3				
CO2	3	3	3				
CO3	3		3		3		
CO4	3	3	3	3			
CO5	3	3	3		3		

Bloom's Category	Continuous Asses	End Sem	
Biodili s Category	1	2	Examination(Marks)
Remember(Re)	10	10	30
Understand(Un)	10	10	10
Apply (Ap)	20	20	30
Analyse (An)	10	10	15
Evalute(Ev)	0	0	0
Create (Cr)	10	10	15
Total	60	60	100

K.S.Rangasamy College of Technology – Autonomous R 2022									
	60 PVL E45 – MEMS system design								
M.E-VLSI Design									
Semester	Hours / Week		Total	Credit		Maximum Marks			
	L	T	P	Hours C CA ES Tota					
III 3 0 2 60 4 40 60 100								 	
INTRODUCT		: -		N 4:		!	\	Deinaiala af	
Overview – MEMS and micro system products – Microsystems and Microelectronics – Working Principle of Microsystems – Micro actuation techniques.									[12]
			•						
	sign and Analy		icitive Accele	erometer.					
	FOR MICRO							*1*	
	d wafer – sing	-							F401
· ·	Sio2, SiC, Si	•	nycrystalline	silicon – Sili	con piezo res	sistors – Ga	ilium arsenic	ie - quartz –	[12]
	crystals - poly			Diama maaiati.	D				
	imation of Res			Piezo-resistiv	e Pressure s	sensor			
				Diffusion	ovidation	C\/D	voical vanar	doposition	
_	phy – photo		•	– Dillusion -	– oxidation –	- CVD — þli	ysicai vapoi	deposition-	[12]
	v epitaxy – etc	• .		an and fahric	ation proces	o of MEMO	dovisos		
	dy of IntelliSu FEM DESIGN	ile Soliware	nor the desig	gii and iabiid	ation proces	S OI IVIEIVIS	uevices		
	derations- Pro	ncass dasid	ın- mack lav	out decian	Design co	netrainte (Salaction of	Materials	
_	g Process - Si	_	-	_					[12]
	Aerospace –	•	•	raging – App	nication of w	icio system	iii automotiv	e industry –	[12]
	sign and Analy			celerometer	usina Coven	tor Ware so	ftware		
MICRO SEN		y 313 OI 1 1620	Jesistive Act	celeronneter	using Coveri	tor ware so	itwaie.		
	- Microsensors	s – Riomedia	cal sensors -	- Pressure s	ensors — The	rmal Senso	rs – Chemic	al sensors _	
	ors – Microact				0113013 1110	illiai Octioo	is Officialio	ai 30113013	[12]
l -	nulation of Mic		Williadie	actors.					
Tradical: dir	Talation of Mile	7,000110010						Total hours	60
Text book(s)	:								
	Tai Pan Hus 'MEMS & Microsystems Design Manufacture and Nanoscale engineering', John Wiley & Sons								
2013									
Julian W.Gardner, Vijay K.Varadan, Osama O.Awadel Karim, 'Microsensors MEMS and Smart Devices', John Wiley & sons, 2011								ohn	
Reference(s)			1401 B						
	g Liu, 'Founda								
	en D Senturia s J.Allen, Micr						2005		
								Springer 2010	1
4. Thomas M.Adams and Richard A.Layton, 'Introduction MEMS, Fabrication and Application,' Springer,2010									

S.No	Topic	No. of
		Hours
1	INTRODUCTION	
1.1	Overview	2
1.2	MEMS	2
1.3	Microsystems	2
1.4	Micro system products	1
1.5	Microelectronics	1
1.6	Compare Microelectronics and Microsystems	1
1.7	Working Principle of Microsystems	1
1.8	Micro actuation techniques	1
1.9	Applications of MEMS	1
2	MATERIALS FOR MICROSYSTEMS	
2.1	Substrate and wafer	1
2.2	single crystal silicon wafer formation	1
2.3	ideal substrates	1
2.4	Mechanical properties	1
2.5	silicon compounds	1
2.6	Sio2, SiC, Si3N4 and polycrystalline silicon	1
2.7	Silicon piezo resistors	2
2.8	Gallium arsenide, quartz	2
2.9	Piezoelectric crystals, polymers	2
3	MICRO SYSTEM FABRICATION PROCESS	
3.1	Photolithography	1
3.2	photo resist	1
3.3	Ion implantation	1
3.4	Diffusion	2
3.5	oxidation	1
3.6	CVD	2
3.7	physical vapor deposition	2
3.8	Deposition by epitaxy	1
3.9	etching process	1
4	MICRO SYSTEM DESIGN	
4.1	Design considerations	1
4.2	Process design	2
4.3	mask layout design	2
4.4	Design constraints, Selection of Materials	1
4.5	Manufacturing Process	1
4.6	Signal transduction, packaging	1
4.7	Application of Micro system in automotive industry	2

4.8	Biomedical	2
4.9	Aerospace, telecommunication.	
5	MICRO SENSORS	
5.1	Introduction	2
5.2	Microsensors	2
5.3	Biomedical sensors	1
5.4	Pressure sensors	1
5.5	Thermal Sensors	2
5.6	Chemical sensors	1
5.7	Optical sensors	1
5.8	Microactuation	1
5.9	MEMS with actuators	1
	Total	60

1. Baranidharan T - <u>baranidharan@ksrct.ac.in</u>

60 PVL 3P1 Project Work I

Category	L	Т	Р	Credit
CG	0	0	12	6

- To impart practical knowledge to the students and also to make them to carry out the technical procedures in their project work.
- To provide an exposure to the students to refer, read and review the research articles, journals and conference proceedings relevant to their project work and placing this as their beginning stage for their final presentation
- Independently carry out research / investigation and development work to solve practical problems in the field of VLSI
- Write and present a substantial technical report / document in the field of VLSI
- Demonstrate the Research findings the VLSI area

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	Apply
CO2	Use different experimental techniques/different software/ computational/analytical tools.	Apply
CO3	Design and develop an experimental set up/ equipment/test rig.	Apply
CO4	Conduct tests on existing setups/equipment's and draws logical conclusions from the results after analyzing them.	Apply
CO5	Work in a research environment or in an industrial environment	Apply

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	3	3	3		
CO2	3	3	3	3	3	3		
CO3	3	3	3	3	3	3		
CO4	3	3	3	3	3	3		
CO5	3	3	3	3	3	3		
1- low, 2- me	1- low, 2- medium, 3- high							

	K.S.Rangasamy College of Technology – Autonomous R 2022						
	60 PVL 3P1-Project Work I						
	M.E-VLSI Design						
Semester	Hours / Week Total Credit Maximum Marks						
Semester	L T P Hours C CA ES Tota						
III	0 0 12 180 6 100 - 100						
Methodology	 Project should be selected based on an IEEE paper which would be base paper The paper has to be implemented fully Modification has to be proposed on the base paper Report has to be prepared by the students as per the format Every week a report on the progress of the project has to be submitted (Friday/Saturday) by the student with the supervisor's signature Three reviews will be conducted by a committee of minimum three members one of which should be the guide Each review has to be evaluated for 100 marks Attendance is compulsory for all reviews. If a student fails to attend the review for some valid reason with proper intimation, one or more chance may be given, else review mark will be zero 						

60 PVL 4P1	Project Work II

Category	L	Т	Р	Credit
CG	0	0	24	12

- To impart practical knowledge to the students and also to make them to carry out the technical procedures in their project work.
- To provide an exposure to the students to refer, read and review the research articles, journals and conference proceedings relevant to their project work
- Independently carry out research / investigation and development work to solve practical problems in the field of VLSI
- Write and present a substantial technical report / document in the field of VLSI
- Demonstrate the Research findings the VLSI area

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Develop attitude of lifelong learning and interpersonal skills to deal with people working in diversified fields.	Apply
CO2	Synthesize knowledge and skills previously gained and apply to an in-depth study and execution of new technical problems in the area of VLSI.	Apply
CO3	Define specification, adopt new VLSI methodologies and analyze to produce a suitable research design and justify the design.	Apply
CO4	Demonstrate the research findings through hardware and software tools.	Apply
CO5	Present the findings of their technical solution in a written report and Publish the work in reputed journals and International Conferences.	Apply

Mapping with Programme Outcomes

Mapping Wi	in i rogramme	Outcomes				
Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3
1- low, 2- me	edium, 3- high					

K.S.Rangasamy College of Technology – Autonomous R 2022								
50 PVL 4P1 - PROJECT WORK – PHASE II								
M.E-VLSI Design								
Semester	Hours / Week			Total	Credit	Maximum Marks		
	L	Т	Р	Hours	С	CA	ES	Total
IV	0	0	24	360	12	60	40	100
Methodology	 The modification proposed in Phase I has to be implemented Three reviews will be conducted by a committee of minimum three members one of which will be the guide Each review has to be evaluated for 100 marks Attendance is compulsory for all reviews. If a student fails to attend the review for some valid reason with proper intimation, one or more chance may be given, else review markwill be zero They should publish the paper preferably in the journals/conferences Final review will be done by the committee that consists of minimum three members one of which should be the guide(including one external expert examiner) The report should be submitted by the students at the end of May 							